Goals of talk

1. PHENIX results on how jets interact with the QGP
 a. Connect with LHC + STAR
2. Use other PHENIX results to provide more detailed view
 a. Fragmentation functions, R_{AA}, v_2, ...
3. Critical next measurements
Intro to jets (I of III): in-situ probe

hard-scattered parton $p+p$: baseline measurements

jet of hadrons

hard-scattered parton $Au+Au$:
1) Interaction parton + plasma
2) Information on the plasma

parton loses energy within plasma
Jet is a weighted combination of measured momenta.

Gaussian filter used in Cu+Cu

\[p_T^{jet}(\eta, \phi) \equiv \max \left\{ \int \int d\eta' d\phi'[p_T(\eta', \phi') - p_T^{ave}(\eta', \phi')]e^{-(\Delta \eta^2 + \Delta \phi^2)/2\sigma^2} \right\} \]

Infrared-safe: lower-weight given to particles away from axis, stable against additional low-pt particles.

Collinear-safe: similar results if fragmentation splits into multiple nearby high-pt tracks or is dominated by single high-pt track.

6/20/2011
Intro to jets (III of III): Jet Finding

Anti-kt algorithm used in d+Au (hep-ph/0802.1189)

Successively recombine particles if they are close (inverse pt-weighted)

\[d_{i,j} = \min\left(\frac{1}{p_{T_i}^2}, \frac{1}{p_{T_j}^2} \right) \Delta R_{ij}^2 / R^2 \]

Two values for R: 0.3, 0.5 → systematics and insight from using different areas, e.g. underlying event.
Goal 1:

- PHENIX results on how jets interact with the QGP
 - connect with LHC + STAR
1. Suppression, deflection of jets in A+A
2. Baseline of cold-nuclear matter effects, d+A

- Technical issues in backup-slides
 - Fake jet rejection
 - Influence of background high-pt tracks
 - Unfolding to obtain energy-scale
 - Efficiency, acceptance corrections
Jet Spectra in Cu+Cu

- Extends to 30 - 40 GeV/c (at pp reconstructed scale)
- Cu+Cu suppressed compared with p+p
 - Jet R_{AA}
Jet R_{AA} in Cu+Cu

Jet R_{AA} reaches 0.4~0.5
- Lost energy not within this tight jet area
- Extends p_T reach of π^0 R_{AA}

$$R_{AA} = \frac{1}{\langle n_{coll} \rangle} \frac{dN_{AA}/dp_T}{dN_{pp}/dp_T}$$

- Run-5 Cu $+$ Cu at $\sqrt{s_{NN}} = 200$ GeV
- Gaussian filter $\sigma = 0.3$

6/20/2011
Transverse scattering? Back-to-back jets

- Expectation
 - Radiative + collisional energy-loss, builds up random walk
 - Expected to increase width of $\Delta \phi$ distribution

Angular distribution does not strongly depend on centrality
Similar behavior observed at LHC

- **ATLAS, jets lose energy**

\[
R_{CP} = \frac{< n_{coll} >_{periph}}{< n_{coll} >_{central}} \frac{N_{jet_{central}}}{N_{jet_{periph}}}
\]

\(R_{CP}\) decreases to 0.5
Little transverse broadening at LHC

- No large increased deflection due to energy-loss
- Increased transverse motion may not be observable for large p_T jets
Common observable to compare results

PHENIX, STAR, CMS, ATLAS all report $\Delta \phi$ distributions
But widths depend on p_T ranges of jets

\[p_{out} = p_{T2} \sin(\Delta \phi) \]

Extract k_T as rms of p_{out} distribution

k_T quantifies any transverse scattering of back-to-back partons

Pitch: 1) all experiments report k_T
 2) Plot k_T vs \sqrt{s}, centrality

\[< k_T^2 > = \frac{< p_T^2 >_{pair}}{2} \]
\[< k_T^2 > = \frac{< p_{out}^2 >}{2} \]
\[< k_T^2 > = < p_{out}^2 > \]
What happens to energy that is lost?

Away-side π^0-h correlations

$$I_{AA} = \frac{\int d\phi \frac{1}{N_{trig}} dN/d\phi[Au+Au]}{\int d\phi \frac{1}{N_{trig}} dN/d\phi[p+p]}$$

High-p_T associate: $I_{AA} < 1$, far-side suppressed
Low-p_T associate: $I_{AA} > 1$
→ additional low-p_T hadrons, correlated in ϕ with initial hard-scatter

6/20/2011
Consistent picture with STAR

- **High p_T assoc**
 - Au-Au away-side yield suppressed, width \simsame \rightarrow little deflection

- **Low p_T assoc**
 - Au-Au away-side higher, broader

- **RHIC consensus**
 - Energy that is lost \rightarrow extra hadrons, well correlated with parton
LHC: where does energy loss go?

- high p_T: $<p_T^\parallel>$ less than 0 → fewer particles on far-side
- low p_T: $<p_T^\parallel>$ greater than 0 → more particles on far-side
 - inside and outside cone, but still correlated with far-side jet → broader
Cold Nuclear Matter effects: baseline d+Au

PHENIX Preliminary
\(d+Au \sqrt{s_{NN}} = 200 \text{ GeV} \)

- 60-88% \(R=0.5 \times 10^7 \)
- 40-60% \(R=0.5 \times 10^6 \)
- 20-40% \(R=0.5 \times 10^5 \)
- 0-20% \(R=0.5 \times 10^4 \)

anti-\(k_T \) jet yields

\((1/N_{\text{evt}}) \frac{d^2N_{\text{jet}}^T}{d\eta dp_T} \)

- 60-88% \(R=0.3 \times 10^3 \)
- 40-60% \(R=0.3 \times 10^2 \)
- 20-40% \(R=0.3 \times 10 \)
- 0-20% \(R=0.3 \times 1 \)

\(p_T^{dA} \) (GeV/c)
Cold Nuclear Matter effects: baseline d+Au

- Both π^0 and jets suppressed (R_{CP})
 - Energy-loss in CNM?
 - Initial-state effects?
- Calculations should reproduce this before use in A+A
Cold Nuclear Matter effects: baseline d+Au

\[\langle k_T^2 \rangle = \langle p_{out}^2 \rangle \]

No indication of transverse broadening of di-jets
Goal 2:

Use other results to provide more detailed view

- Fragmentation
- Single – particle R_{AA}, v_2 at high-p_T
-
γ-h: Golden probe of energy-loss

- Di-jets can only ever measure relative energy-loss
- Direct γ provides the initial energy-scale

Statistical subtraction

Run 7 Au+Au 200GeV 9-12 x 3-5 GeV/c

Isolation(p+p) PRD 82 072001
\(\gamma - h \rightarrow \text{Fragmentation Functions}\)

\[\xi = -\ln\left(\frac{p_T^h \cos(\Delta \phi)}{p_T^\gamma}\right)\]

- Au+Au compared with p+p
- Smaller yield at high-z, low \(\xi\)
The ratio of fragmentation functions in p+p and Au+Au.

\[\xi = -\ln\left(\frac{p_T^h \cos(\Delta \phi)}{p_T^\gamma} \right) \]

\[\langle I_{AA} \rangle = 0.598 \pm 0.095 \]
R_{AA} of single particles

- Jet energy-loss + fragmentation + medium response
 - Precise data, unambiguous observable
 - Constraint on models
Particle species: R_{AA}

- Multiple insights, tests of models
Energy-loss of heavy-flavor quarks

- Heavy quarks lose energy at comparable amounts as light-quarks
- Strongly couple to QGP: how, why?
- Challenge for e-loss models to describe HF R_{AA} and v_2

arXiv:1005.1627
Elliptic flow of \(\pi^0 \) at high-\(pt \):

- Path-length dependence of E-loss, talk by Paul Sta

- \(\Delta E \sim (\text{path length})^3 \) favored

- Need \(v_2 \) of jets

6/20/2011
Further control of path-length

- Di-hadron yields \(\text{(Au+Au) / (p+p)} \)
 - relative angle between trigger particle and reaction plane, \(\phi_s = \phi_{\text{trig}} - \phi_{\text{rp}} \)

- Factor of 4 stronger suppression in yield, trigger is out-of-plane
 - Due to longer average path-length

\[\text{arXiv:1010.1521} \]
Goal 3: Critical next measurements

- Change coupling
 - Separate measurements of charm and beauty (Mike Leitch Tue talk)
 - VTX upgrade in place and taking data
 - Vary Q^2 of hard-scattering
 - Are quarks strongly coupled to the QGP at all scales?
 - Are there quasiparticles at any scale?
 - Change medium ← excitation function (Jeff Mitchell talk)
 - RHIC sweet spot 10-50 GeV/c jets
 - sPHENIX

- Jet measurements: pp, dA, AA
 - $<k_T^2>$ as well as E-loss
 - v_2 of jets

- Increase precision of γ-h measurements → fundamental
Conclusions

- Energy-loss of high-\(p_T\) parton leads to suppression of jets
 - Lost energy produces extra hadrons
 - At both RHIC and LHC, these hadrons still correlated with jet
- Back-to-back angular distributions of jets are not strongly modified
 - \(<k_T^2>\) can quantify this and enable comparisons across \(\sqrt{s}\)
- \(\gamma\)-h results in Au+Au: reduction in high-z fragmentation
- Path-length dependence of energy-loss, consistent with \(L^3\)
- Use broad range of observables to
 - Obtain maximum insight into energy-loss mechanisms and properties of QGP