Current and Near-term Transverse Spin Measurements at PHENIX

John Koster
for the PHENIX collaboration
RIKEN BNL Research Center
RHIC AGS Users’ Meeting
2011/06/20
PHENIX Detector at RHIC

Central Arms $|\eta| < 0.35$
- Identified charged hadrons
- π^0, η
- Direct Photon
- J/Ψ
- Heavy Flavor

Muon Arms $1.2 < |\eta| < 2.4$
- J/Ψ
- Unidentified charged hadrons
- Heavy Flavor

MPC $3.1 < |\eta| < 3.9$
- π^0, η
Single Transverse Spin Asymmetries in pp Collisions

Features:
- Forward non-zero asymmetries.
- Asymmetries consistent over an order of magnitude in \(\sqrt{s} \).
- Several theoretical frameworks to explain the results.
(I) Transversity quark distributions and Collins fragmentation function
Correlation between proton & quark spin + spin dependant fragmentation function

\[\propto \delta q(x) \cdot H_1^\perp (z, \vec{k}_\perp^2) \]

Quark transverse spin distribution \hspace{1cm} Collins FF

(II) Sivers quark-distribution
Correlation between proton-spin and transverse quark momentum

\[\propto \tilde{f}_{1T}^q (x, k_{\perp}^2) \cdot D_q^h (z) \]

Sivers distribution

(III) Higher-twist effects
 Twist-3 quark-gluon/gluon-gluon correlators
 Expectation: at large \(p_T \), \(A_N \sim 1/p_T \)

So far, fall-off with \(p_T \) has not been observed!
Neutral Pion Cross-Sections Experiment vs pQCD

New PHENIX Result with Forward Neutral Pions at $\sqrt{s}=200$ GeV

Close agreement with charged pions from BRAHMS.

More work needed to understand lower energies.
1. A_N Measurements
 - Sensitive to combinations of all three effects
 - At forward and mid rapidity

2. Sivers Measurements
 - Heavy flavor
 - Back to back hadrons

3. Transversity Measurements
 - Interference Fragmentation Function
 - Collins in Jets

2012+2013 Runs are projected to produce 33 pb$^{-1}$ at 60% polarization. Projected error bars are interspersed throughout the talk.
Underlying Event Kinematics of p-p Scattering at √s=200 GeV

- Estimated with Pythia simulation package
- Mid-rapidity:
 Low p_T dominated by gluon gluon scattering
- Forward-rapidity:
 High-x + Low-x scattering

![Graphs showing data in different rapidity regions](image_url)
Photon merging effects prevent two-photon π^0 analysis for $E>20$ GeV ($p_T>2$ GeV/c)

62 GeV
20 GeV \rightarrow 0.65 x_F: Two-photon π^0 analysis

200 GeV
20 GeV \rightarrow 0.20 x_F: “Single clusters”. Yields dominated by π^0’s but also get contributions from:

- **Electromagnetic**
 - Direct photons
 - Decay photons (η, etc)
 - Estimated using Pythia (TuneA)

- **Hadronic: ($\pi^{+/-}, K^{+/-}$, etc.)**
 - Estimated with Pythia+GEANT.
 Initial estimate is <10% contamination in lowest energy bin with decreasing fraction as deposited energy increases
 - Qualitatively consistent with expected detector behavior

Decay photon impact positions for low and high energy π^0’s
(i) Forward SSA $A_N \pi^0$ in MPC at $\sqrt{s}=62$ GeV

- PHENIX π^0 results available for $\sqrt{s}=62$ GeV
 - Production dominated by quark-gluon
 - Similar x_F scaling to higher and lower center of masses
 - Asymmetries could enter a global analysis on transverse spin asymmetries

PHENIX Detector

$\sqrt{s}=200$ GeV

- Process contribution to π^0, $\eta=3.3$, $\sqrt{s}=200$ GeV

- $\eta > 3.5$
- $\eta < 3.5$

(i) Forward SSA A_N Cluster in MPC at $\sqrt{s}=200$ GeV
(i) Mid-rapidity, |y|<0.38, $A_N \pi^0$, η Analysis

Similar analysis to existing PHENIX A_{LL}

1. Measure A_N in mass window of:
 - π^0 (Signal+Background)
 - η (Signal+Background)
 - Background

2. Determine background fractions (r)

3. Asymmetries binned in p_T for:
 - inclusive selection
 - with $x_F>0.01$, $x_F<-0.01$

$\begin{align*}
A_N^{\text{Signal}} &= \frac{A_N^{\text{Signal}+\text{Background}} - r A_N^{\text{Background}}}{1 - r}
\end{align*}$

Previous π^0 A_N measurement done with 2002 dataset.
(i) Results for mid-rapidity $\pi^0 A_N$

- Previous result shown to be sensitive to gluon Sivers function.
- New result will be published with 20x smaller error bars.
(i) Mid-rapidity π^0 and ηA_N

- A_N consistent with zero
(i) Mid-rapidity $\pi^0 A_N |x_F| > 0.01$

- A_N consistent with zero

PHENIX Preliminary, $\sqrt{s}=200$ GeV, $|\eta|<0.38$

Vertical Scale Uncertainty: 4.8%

- $\pi^0 x_F < -0.01$
- $\pi^0 x_F > 0.01$
(i) Mid-rapidity $\eta \ A_N \ |x_F| > 0.01$

- A_N consistent with zero
1. A_N Measurements
 – Sensitive to combinations of all three effects
 – At forward and mid rapidity
2. Sivers Measurements
 – Heavy flavor
 – Back to back hadrons
3. Transversity Measurements
 – Interference Fragmentation Function
 – Collins in Jets
(ii) Constraints on Sivers Function: Heavy Flavor

D meson A_N

- Production dominated by gluon-gluon fusion at RHIC energy

- Gluon transversity zero
 → Asymmetry cannot originate from Transversity x Collins
- Sensitive to gluon Sivers effect

Theoretical prediction:

$p^+p \rightarrow DX$

\[Q = c \text{ or } b \]

\[Q \]

Gluon Sivers=Max
Quark Sivers=0
Gluon Sivers=0
Quark Sivers=Max

(ii) Constraints on Sivers Function: Heavy Flavor

PHENIX: no reconstruction of D meson
Exploratory measurements of A_N for single muons
Dominated by charm production in current kinematic range

- Predicted asymmetry smeared by decay kinematics
- Measurements will be enhanced significantly by the inclusion of precision tracking: VTX (installed) and FVTX (to be installed for next run).
Azimuthal distribution of Di-Jet production in pp
Suggested in: Boer, Vogelsang, Phys. Rev. D 69, 094025

Beam is in and out of page
Look at back-to-back jet opening angles

Sensitive to Sivers function only!
No Collins-type effects
(ii) Constraints on Sivers Function: DiHadron Production

PHENIX Result from 2006 data:
- Done with di-hadrons at $y_1 = y_2 \approx 0$
- Asymmetry consistent with zero

<table>
<thead>
<tr>
<th>η_{\min}</th>
<th>η_{\max}</th>
</tr>
</thead>
<tbody>
<tr>
<td>-3.7</td>
<td>-3.1</td>
</tr>
<tr>
<td>-2.0</td>
<td>-1.4</td>
</tr>
<tr>
<td>-0.35</td>
<td>+0.35</td>
</tr>
<tr>
<td>1.4</td>
<td>2.0</td>
</tr>
<tr>
<td>3.4</td>
<td>3.9</td>
</tr>
</tbody>
</table>

Similar analysis possible in different combinations of rapidity

Works in progress…
1. A_N Measurements
 - Sensitive to combinations of all three effects
 - At forward and mid rapidity

2. Sivers Measurements
 - Heavy flavor
 - Back to back hadrons

3. Transversity Measurements
 - Interference Fragmentation Function
 Already covered in Anselm Vossen’s talk
 - Collins in Jets
(iii) Collins Jet+Hadron Measurements

- Measurement originally proposed in:
 F. Yuan, PLB 666 (2008) 44-47

- Measure:
 \[p(P_A,S)+p(P_B) \rightarrow jet(P_j) \rightarrow H(P_H)+X \]

 Define two angles:
 - \(\phi_S \): proton spin direction
 - \(\phi_H \): hadron angle around jet axis

 Measure: azimuthal modulation of \(\sin(\phi_H - \phi_S) \)

Model dependent calculations show that Collins effect can produce large forward single spin asymmetries.
Planned measurement:

- Measure near-side jet axis using PHENIX central arm.
 - Central arm recently upgraded with large acceptance silicon tracker ($|\eta|<1.2$)
- Measure away side neutral pion in forward region using MPC.

Projected asymmetries:

- Added transverse spin processes in Pythia to predict the asymmetries for various transversity distributions.
- Collins function taken from analysis of SIDIS+BELLE data.
Transversity tuned to produce:

- 25% of PHENIX forward A_N
- 100% of PHENIX forward A_N
PHENIX has exciting measurements for the near-term of RHIC running. (Exciting long term opportunities covered in other talks!)

- Figure of merit (P^2L):
 - on disk: 2.3 pb$^{-1}$
 - projected: 11.9 pb$^{-1}$

Planned Measurements

- Inclusive A_N asymmetries
 - High p_T results at forward rapidity.
 - Precision results at mid rapidity for both π^0 and η mesons

- Sivers asymmetries
 - Di-hadron correlations at mid rapidity
 - Heavy flavor asymmetries
 Results will be significantly enhanced by precision tracking upgrades.

- Collins asymmetries
 - Interference Fragmentation Function asymmetry at mid rapidity (covered in Anselm’s talk)
 - Jet+Hadron Collins measurement.