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Bi. The Pillars of the eRHIC Physics program
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B Golden Measurements: Ph ysics of strong color fields

— 2\

Science Basic Detector Machine
Deliverable Measurement Requirements Requirements
integrated gluon _ _ need to reach x~10-4

distributions inclusive DIS el g8 AlEeen (D large x,Q2 coverage

nuclear wave fct.

saturation, Q;

Fayr

— very good momentum and
angular resolution for e’

- medium lumi
- highest /s

k+-dependent gluons;
gluon correlations
non-linear QCD
evolution/universality

semi-inclusive

DIS
di-hadron
correlations

very similar to inclusive DIS
- excellent particle ID
- wide coverage range in n

need to reach x~104
large x,Q? coverage
- medium lumi
- highest /s

transport coefficients
in cold nuclear matter
parton energy loss;
shower evolution

semi-inclusive
DIS:

— very good electron ID

— very good momentum and
angular resolution for e’

- excellent particle ID

large x,Q? coverage
multi-dim binning
- medium - high lumi

. light and heavy S low - high /'
energy loss mechani== | hadrons (c,b), Tets - excellent vertex
A o resolution
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B, Golden Measurements: Spin Physics

—%

Science Basic Detector Machine
Deliverable Measurement Requirements Requirements
spin structure at small x need to reach x=10"%
o — very good electron ID large x,Q2 coverage
con’rr'lbu’r_lon of Ag, AX inclusive DIS - very good momentum and about 10fb!
to spin sum rule _ angular resolution for e’ > medium lumi
| - high /s

full flavor separation
in large x,Q2 range

semi-inclusive

very similar to inclusive DIS
—~excellent particle ID

need to reach x=104
large x,Q2 coverage
polarized 3He beam

@ BROOKHFAEN
NATIONAL LABORATORY

strangeness, s(x)-5x) DIS separate 7, K, p over a medium lumi
polarized sea 7 wide range inm > hlgh Is
lect K orob 20x250 to 30x325
e’ectroweax probes . — very good coverage for positron beam
ofclp:o:osn :‘r:u?u;e very hlgh Q? hadronic final state polarized 3He beam
avor separatio . g , , : . :
- kinematic from g-jet - high lumi
electroweak parameters hadronic final state q-J S higghesT T
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B. Golden Measurements: 3D-Imaging in by / ké\

.

Science
Deliverable

Basic
Measurement

Detector
Requirements

Machine
Requirements

Sivers + unpol PDF
valence, sea quarks & gluons
* quantum interference

semi-inclusive
DIS

— very good electron ID
— very good momentum and
angular resolution for e’

large x,Q? coverage

* Collins-FF

* Boer-Mulders fct. vm‘?

DIS

* multiparton correlations transverse nucl. pol. ~ excellent Par‘ﬁde ID 5D binning
* spin-orbit correlations & | dj- hadron/(di- jets) separate «, K, p over a - high !umi
role of OAM heavy- flavor production I g M > low - high /s
- matching low-high pr, . - full ®-coverage around y*
‘"‘“\R —~ excellent vertex res.
chiral odd fcts.
valence, sea quarks & gluons semi-inclusive
- transversity & IFF as above as above

.

quark and gluor. =~
imaging via GPDs
in br-space
access to L, and L,

— very good electron ID

large x,Q?,t coverage

NATIONAL LABORATORY

. — very good momentum and 4D binning
€XC|US|V€ DIS qngular resolution for e’ polar'ized beams
DVCS, J/V¥, p, ® | - exclusivity and high > high lumi
resolution in t > Roman pots > low - high /s
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B. Deep Inelastic Scattering

i S

. . ..
Kinematics: ek, /) 0?=—q?=—(k —k')? Measure of
E/ M M resolution
ek) o Q" =2E E/(1-cos®,) Pover
pq E! ( 0! ) Measure of

y= H =1- ECOS L_J inelasticity

Q2 Q Measure of

> X= momentum
P(p,) 2P0 SY fraction of
e- p/A struck quark
> <
: Q° 18Q° E
Challenge: _ . . 8 Hadron:z=—"; J
need to cover wide range in beam energies \Y

lepton: 5 - 30 GeV

hadron (p/Au) 100 - 325 GeV / 25 - 130 GeV p, : with respect to y

Resolution in x, Q? dominated how well the scattered lepton is measured

low momentum: Multiple scattering = low material
high momentum: position resolution from tracking detector
all momenta Br'ems -strahlung 2 low mater'lal

~ srony e et e e ety i e 6



B DIS Kinematics

T E— e
Potential limitations in kinematic coverage: pa _, E;‘Zm
y=—=1-—cos’ | =
Q? vs. Bjorken x, 20 fb™! at 20 x 250 GeV pk E, 2
% | highy limited by /
5 | radiative corrections
- can be suppressed by .
2 -BY requiring hadrenic 7
; activity = 0_9?,. |
10 = ] )
- 3 10
= o - ' . 10°
10~ 10° 10~ o
Q Strong x-Q? correlation
» high x 2 high Q2 low y limited by |
p » low x 2 low Q? theta resolution for e'

= use hadron method
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B. Deep Inelastic Scattering

;
.

Kinematics: o’ Measure of

Q2 =— 2 =—(k —_ k')z resolution
power

Q°=2E_E!(1-co0s®,.)

Er o Measure of
_ Pq —1—_—tcos?| e | inelasticity
pk

) Measure of
Q Q momentum
2 pq Sy fr‘aC'l'lon Of

struck quark

Xg =

— — n 2 —
ewplA > esplAsyl Thplple - (PTP)LE=o—
detect oll event products in the detector

Special sub-event category rapidity gap events
e+p/A 2> e'vy/ J/w/ p/ o/ jet
don't detect p' > HERA: 20% non-exclusive event contamination

ing mass technique as for fixed target does not work = resolution
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. Kinematics of scat. electron
N _ | cuts: Qzueevz && 0. ony«o 9|
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B. Reguired Lepton- Hadron Separation

\

high Q? events

f‘@‘
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@ Kinematics of semi-inclusive hadrons

PIONS
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8. Kinematics of semi-inclusive hadrons

tamdnium (Gevidf
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5. Kinematics of exclusive hadrons
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. Important for Detector Design

d DIS: h —
» with increasing center-of-mass energy lepton goes more and
more in original beam direction
> high Q? events go into central detector

> low Q2 events have small scattering angle and close to original
beam energy

need low forward electron tagger for low Q? events
low-mass high resolution trackers over wide angular acceptance
O Semi-Inclusive DIS

> hadrons go from very forward to central to even backward with ,
lepton beam energy increasing /

@good particle-ID over the entire detector (1<p<30-606GeV)
O Exclusive Reactions:

> decay products from excl. p / ¢ / J/¢ go from very forward to
central to even backward with lepton beam energy increasing

RHIC - AGS User Meeting, June 2011 15



B. Additional Remarks

O Charm detection e —

> structure functions

@ detecting lepton form decay in addition to scattered via displaced
vertex should be enough

» charm in fragmentation

@ need to reconstruct D° meson completely to measure its z
- good PID

O Very high luminosity 1034 cm-1s-!
> will be systematic limited basically in every measurement
> needs a lot of care to account for this in the design /
@ detector: alignment, ...
@ polarization measurements: bunch by bunch;
@ |luminosity measurement
@ relative luminosity measurement

\ Brookunuen £ C. Aschenaver RHIC - AGS User Meeting, June 2011 16



B, How to detect coherent/in-coherent events in ep/A_?

;

Q e+p/A > e'+p /A" +y/ J/w/ p/ ¢/ jet e
O Challenges to detect p'/A’

> Beam angular divergence limits smallest outgoing
@, for p/A that can be measured

> Can measure the nucleus if it is separated from -.
beam in Si (Roman Pot) “"beamline” detectors ‘ ) opmenent
e Ptmin ™ pzA emin i 'rt;p i Ob@::;m}j i
B For beam energies = 100 GeV/n and 6, = 0.1 mrad
» Large momentum kicks, much larger
than binding energy (~8 MeV) A ?2—” Gev?, zp=0.001
@ For large A, coherently diffractive nucleus

cannot be separated from beamline
without breaking up

- break up neutron detection
- veto incoherent events

] X (My)

== (Quasielastic IPnonsat
— Coherent IPnonsat 1 J

= |Psat
- Coherent IPsat

1M
Coherent IIM

e Pra . .
T L .

incoherent dominates at a t+ at 1/e
of coherent cross section

t [GeV?
2 pf << ptmin PF J'.'.

B NATIONAL LABORATORY E. C. Aschenauer RHIC - A&6S User Meef/h_g, June 2011 17




. ODVCS: ep 2> epy

L

e —— N 1 2 |
.
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B. Diffractive Physics: p’ kinematics
—— T — I ——
t= (P4 pz)z 2[(mpm mpout) (EmEout - P mpzout)]

My - " Roman Pots"” acceptance studies see later

Diffraction: |

electron

ﬁ 30_ o
A E 5*¢“¥’1
_______proton, nuclei P E 25— ":"-I:"?-
e L —{10°
o ~ -
on — _
£ 20— 7
g [ ]
E L
S 15 L 102
: — —
2 N
o B .
S 10— -
B 10

200 250
proton momentum [GeV/c]

100
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B. Kinematics of Breakup Neutrons

e e— e
.

Results from GEMINI++ for 50 GeV Au

| theta distribution of neutrons at E* = 10 MeV | histoThetal0
Entries o143

| ” | T g T —m RE~NT | | histnThotaSn |

Results:

With an aperture of =3 mrad we are in relative good shape 0%
- enough “detection” power for t > 0.025 GeV? B
- below t ~ 0.02 GeV? we have to look into photon detection

» Is it needed?

Question:

* For some physics rejection power for incoherent is needed ~10*
- How efficient can the ZDCs be made?

40

IhIIIIIIIIIIIIIII
3 6 T 8

by Thomas Ullrich mrad

- ==— +/-Bmrad acceptance seems sufficient
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B, How to detect coherent/in-coherent events in ep/A_2?

e c—

Q Rely on rapidity gap methed
» simulations look good
clear difference between DIS and
diffractive events
> high eff. high purity
possible with gap alone
@ ~1% contamination
@ ~80% efficiency
» depends critical on detector
hermeticity
» However, reduce the
acceptance by 1 or 2 units of
rapidity and these values drop
significantly
» improve further by veto on
breakup of nuclei (DIS)

Q Very critical
» mandatory to detect nuclear
fragments from breakup
» n: Zero-Degree calorimeter
. A frag: Forward Spectrometer

1

0.8

0.4

0.2

0.6

.

Efficiency Purity

e+p: RAPGAP

_—';"-""IT_‘ rreAe e ——— :: ﬂ
Rl i
L . H
e it
v i
.
v '
v

104100 GeV
= ===+ Purity - 1:1
- === Purity - G634
- === Purity - 80:10
—— Efficiency - 1:1
—— FEfficiency - 66:34
—— Efficiency - 90:10
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B. Emerging Detector Concept

S S m——

Forward / Backward S

Spectrometers:
2-3T Solenoid

B Dipole
] Tra cking
D EM-~Calorimeter

~3.0m

detector currently modeled in
« FLUKA

« GEANT-4

« and in a fast simulation

* together with ZEUS and STAR ;
- important for Detector R&D and
25m 45m physics capabilities

-}

F F 3

VY

hadron=-heam lepton=-heam

high acceptance -5 < n < 5 central detector

good PID (n,K,p and lepton) and vertex resolution (< Sum)

tracking and calorimeter coverage the same 2 good momentum resolution, lepton PID
low material density 2 minimal multiple scattering and brems-strahlung

very forward electron and proton/neutron detection > maybe dipole spectrometers

N
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. Integration into Machine: IR- Design

eRHIC - Geometry high-lumi IR with p*=5 cm, *=4.5 m —
and 10 mrad crossing angle = this is required for 10° cm-? s-!

Outgoing Proton direction already far advanced

£
o R
405 3 m < \ © g |
W ¢
N 10 v
%3 \1'110 mred o ch oj
‘ %\ﬂk]lmlll--—.ll — ,
a2210'Y 20 30
. 39.98 m R
60.0559 m |
) 90.08703 m
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B, Integration into Machine: IR-Design
— T E—
Outgoing electron direction currently under detailed design
= detect low Q? scattered leptons

- want to use the vertical bend to separate very low-© e' from beam-electron

- can make bend faster for outgoing beam - faster separation
=2 for 0.1°<@<1° will add calorimetry after the& mdin' deteetgy e 0 ocV clectrons

0.60 - e

C - ]
0.50 - - ] |

0.40 P 3

) _-Space for ; )
-7 low-© e-tagger :

@ < mz.k » me.L >
mgsd-noiqal g mgsd—no1hed 465 U.S'e/' Mee ﬁﬂg, JU”e 20]] 24

A



ﬂ{; Latest beam optics for outgoing nominal protons

—t— = - .
. PN sTudneM\\
Beam transport using Hector:
500 500
400~ 25 mrad (each step = 5 mrad) 400 * 25 mrad/(each step = 5 mrad)
300 300
200" o P // 2000 -
0 outgoing protons with 20% momentum loss
E - 500 500
:1Io 400 T 25 mrad (each step =5 mrag 400— T25mra
300 300~
=20 - m
200F . 2001
80 b v -
100 ] . 100/ ]
wgn H| s
-50 E 0 — -’/% N E O¢ —
ﬁlooi— 7 : ->1'00§— ~
-2002— ‘DO’ -2002—
-300- -300-
y -400- -400-
:IIII|IIII|IIII|IIIIIIII|III :IIII|IIIIIII|IIII|IIII|IIII
§ -500, 5 10 15 20 25 30 0% 5 10 15 20 25 30
s [m] s [m]




B, proton distribution in y vs x at s=20 m
without quadrupole aperture limit — | —

300 10° 300
2000 25X250 Entries 100001 200
- :5-.
1001 102 100
L .
T T
E o . £ o0
> [ > [
r S
1001 10 100
:
200 200"
: __—- N - : .". - 10
L C .'-E-{I # --lI-I-IJ:ll L1

- o by by b Ly by 1 - I B AT o
30—&00 -200 -100 0 100 200 300 30—300 -200 -100 0 100 200 300

x [mm] . . o x [mm]
with qucdruﬂpole aperture limit
300 1 300
- 25%250 | - 5x50 |
20[]_— - Entries 99992 200__ Entries 64323
100 102 1001
E I E
E of ro- E o
> ; ; > I_‘_,'“ '
-100( 10 100~
-200( -200(
B Ll 1 | | - L | Ll Ll | L | - | Ll 1 | | - L : | I | | I L | Ll Ll | L | I | | I | | I L
t 30056200 100 0 _ 100 200 300 | %Moo 200 100 0 _ 100 200 300
x [mm)] RHIC x [mm)] 26
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B, Accepted in"Roman Pot“(example) at s=20m

300 w— 300[ I
25x2 i X I
200 5 50 Entries 67542 200 5 50 Entries 36266
- —10
100~ 100 1
E L E
£ 0 E of
> - 11
-100— 100 .
-200 -200 I |
- i 10
B 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 L | | | | | | | 1 1 | 1 1 1 1 | 1 1 1 1 | L L L L | L L L L
30850 200  -100 [0 | 100 200 300 3000 - -
X mm
- 25x250 - )
10° 10°

102 102

10 ——— Generated 10
- = Quad aperture limited
: 1 —RP (at 20m) accepted 1¢
1— L |
0 0.2 0 4 0. B 0 8 1 1.2 b, [G-Iéd\'ﬂc] HIC - 0

. 1.4
P; [GeVic]



. Some thought about rates

e
40
[ \
v v duta , low multiplicity
B o plp)-p data _ 4-6 [s = 40-65 GeV
etp dat ALEPH, DELPHI,
of P L3, OpaL. / N, (ep) ~ N (eA) < N.\(pA)
- : Y1 - no occupancy problem
25 g “ UA5 ] — ,
JADE, TASSO ¥ 4 ; ' ‘_.+
o~ - o ff F Tl ol TP b
S 20 F ?-M'Err I {\M“’ S S It
- . %'E' r& ¥ ! . . . TEU L EE : e L i
15 - 5" *T P'1!1)11;1:5,1.--1-:&'L.:: _ : |
SR> AP AN SN U A 5 & SN N W O
11]_ [12MARK1 't,r+ c;/lsﬂ ] E
I f o 1 ' 1 FE 1 VY bkl
5 'H’ S S R !
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IAMDErs " g , L . ) ] [ [
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J3 (GaV) m"; " T
Cr‘oss sect'on O- < O- < O' °|||||n'I] ||||I'ITI] |||||I'I'I'l ||||||||! |||||ITI'l H””". ||||||||! |||||n'I] |||||I'I'I] T
N N 1NN N N N B R
Pythia o,,: 0.030 - 0.060 mb T
Lummosu'ry 1034 em! 51 =107 mb-! s-! I e
- ol pp
=== Interaction rate: 'r‘*am
300 -600 kHz ” i
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. What can PHENIX and STAR do?

T —_— .
MPC 31<|n| <39
2.5° <« @ < H 2°

Muon Arms 12<|n]| <24
South: 12° <« ®@ < 37°
North: 10° < ®@ < 37°

Central Arms | n | < 0.35

60° <« ® < 110°

Q scattered lepton can only be
detected at mid-rapidity

Bor =wgL

L come | n | < 0.35 very high Q2
O no acceptance for TMD/GPD
_ [ ' e physics
zpeson |3 LR JE.//IS =\=.U= - - =own (O small acceptance for semi-inclusive
MulD ﬁ - M :I:| VTX HCI 1 _ MulD thSiCS
PHENIX:
Souh  SideView  Noih 7 , in its current incarnation it is not suited

18.5 m= 60 ft

_ for eRHIC physics }

<€ e
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B. The New PheniX Spectrometer

Design completely driven by AA, dA and pp physics program M
< e-

r) f.
RPC

RPC3 N 3 |
[EIENETEDAN RS 1
What can be done:
Q inclusive physics 2 reasonable coverage for scattered lepton
» but need to close the gap between 1<n<2
» high mass tracking 2 Q2 - x resolution
Q semi-inclusive physics
» no PID in central detector and hadron beam direction |
- will loose significant part of the physics program
Q exclusive physics program )

» limited acceptance for coherent physics
- but need to add roman pots
. - design is not suited for rapidity gap events

" g Design not compatlble with most of the eRHIC physncs progmm

1 -

LY, et
on

+4 +3 42 +1 o -1 -2 -3 -4

T1acke1 .
e EJI':]'J:( iy
P1eShowe1 SPHENIX Upgrade
EMCal s
-F3 Compact oy il
PbS RICH Solenoid g oS Upgrade
C L
Aerocel HCal —
g +4 43 42 + o -l 2 -3 4 n

HC al PreShower GEM TlﬂCkel «— Hadron Direction Electron Direction —




. STAR Experiment as of 2014 a

“WRPC ToF Barrel
MRPC ToF Barrel l

I Phase 2
I |

computing

rigger and DAQ :

\
)
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B, eRHIC phase 1: kinematic range

S ~
5 GeV e + 50 b GeV e + 325 GeV/nucIeon

L5 50@w¢huc|eon . 5+325 electron. e ‘
2<q<3 | _ : s

d Inclusive physucs
> “Forward” (-2.5 <~ n < -1) electron acceptance essential to span deep-inelastic

(DIS) regime

[ semi-inclusive physics
> need to investigate how well PID coverage is matched to SIDIS kinematics

> Both backward and forward hadron coverage valuable for SIDIS

O exclusive physics program
> Need forward proton and expanded photon detection (>DVCS)

@ Roman pots (also valuable for spectator proton tagging in e+3He)

> EM calorimetry for -4 < n < -1
> rapidity gap event acceptance needs to be checked

10* 104

2% [GeV?]

LTI

T II[I\‘

2<q<3

2 [GeV?]

U) ©

10

32
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B. Evolving from STAR into eSTAR

T — .,
proton  nucleus/electron

Lepton Beam Direction:
ToF: =, K identification, t,, electron

ECal: electrons and photons

6CT:

a compact tracker with enhanced electron capability
Combine high-threshold (gas) Cherenkov with TPC(-like) tracking

Hadron Beam Direction:

optimized for p+A and transverse spin physics
O Charged-particle tracking
Q e/h and y/w° discrimination
O Baryon/meson separation

0 What is the momentum resolution at forward rapidity (B=0.5T too low?)

Design closer to eRHIC physics program needs
@ need to simulate golden measurements to understand the details

EIC Generic Detector R&D Panel:
GCT: LOI toward multi-institution R&D effort
HCal: R&D proposal
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@ g QOutlook and Summary
%
0 Challenges for both eSTAR and ePHENIX
> IR design needs to be adopted > L* - impact on lumi
> how can the 10 mrad crossing angle be integrated
O what is the minimum physics program ePHENIX and eSTAR need

to be able to cover, to be an interesting option for phase I of
eRHIC

O Dedicated detector is essential to do the full eRHIC physics
program

> essential to form a eRHIC community with new groups

0 IR and detector design need to go hand in hand

O what is the cost for a new detector? How can it be staged? /
> reasonable technology choices > price

0 need to start quantitative detector simulation
> simulate golden experiments in detail

> address question: what can a dedicated ep/eA detector do in pp, AA,
pA collisions |
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Bi. Most Compelling Physics Questions

/ spin physics

imaging
@ what is the polarization of gluons at @ what is the spatial distribution of /
small x where they are most abundan quarks and gluons in nucleons/nuclei
@ what is the flavor decomposition of @ understand deep aspects of gauge
the polarized sea depending on x theories revealed by k; dep. distr'n
determine quark and gluon contributions possible window to

\\ to the proton spin at last / \\ orbital angular momentum j

/ physics of strong color fields quantitatively probe the universality of\
_ S strong color fields in AA, pA, and eA

& understand in detail the transition to the non-linear

regime of strong gluon fields and the physics of

@ P.S&" '&%*\'?é'rd probes in eA interact with the medium
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i, STAR — eSTAR

e .

.S

Optimizing STAR for e+p and e+A collisions from 5+50 to 5+325 GeV

O Inclusive scattering over the entire deep-inelastic region
> Key measurements
@ F, in e+p and e+A: direct measure of gluon densities in nucleons and nuclei
@ g in e+p and e+3He: nucleon spin structure
@ FA/F% parton distributions in nuclei (including gluons via QP evolution)
> Need electron detection, ID, and triggering over -2.5 <~ n < -1
@ Combined mini-TPC/threshold gas Cherekov detector

O Semi-inclusive deep-inelastic scattering over a broad (x, Q%) domain

> Key measurements
@ Flavor-separated helicity distributions, including strangeness
@ Collins, Sivers, Boer-Mulders, and other transverse spin distributions
@ Flavor-separated parton distributions in nuclei, including strangeness
@ Parton energy loss in cold nuclear matter

> Need hadron detection and identification beyond the TPC/EEMC
@ Extend TOF to cover -2 < n < -1
@ GEM disks (from forward instrumentation upgrade) plus hadronic calorimetry in the region 2

<n<3 4

O Deeply-virtual Compton scattering
> Key measurement
® GPDs
> Need forward proton and expanded photon detection
@ Roman pots (also valuable for spectator proton tagging in e+3He)
@ EM calorimetry for -4 < n < -1
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