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sPHENIX at the last Users’ Meeting
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• high statistics upsilons

• large dijet and γ+jet rates

• charm/beauty jet tagging

• γ/π0 to 40 GeV/c

• fragmentation functions

• forward p+A low-x jets

• quarkonia

• transverse spin probes

• evolution to ePHENIX



A first stage – recover full plan with later increments

• inclusive jets (20–60 GeV)

• RAA (with geometric control)

• dijet and γ+jet correlations

• AJ, Ejet/Eγ

• direct γ (pT > 10 GeV/c)

• tracking with VTX

• jet-hadron (pT < 4 GeV/c)

DOE guidance: submit ~$20M MIE*

*DOE glossary: MIE = Major Item of Equipment
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Calculation of η/s for case of weak coupling
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How does the effective coupling evolve with T?

Is the change from strong coupling to weak coupling associated 
with changes in quasi-particles, excitations, strong classical fields?

Current Understanding of η/s The Physics Case for sPHENIX
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Figure 1.2: (Left) Shear Viscosity divided by entropy density, η/s, renormalized by the con-
jectured KSS bound as a function of the reduced temperature, T/Tc, with various calculations
for the quark-gluon plasma case. (Right) Figure with three conjectured scenarios for the
quark-gluon plasma transitioning from the strongly coupled bound (as a near perfect fluid)
to the weakly coupled case.
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Figure 1.3: (Left) q̂ as a function of T/Tc in the three scenarios as related with the weak-
coupling calculation. (Right) Different calculations for the scaling of q̂ under weak and strong
coupling assumptions.
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 η/s is related to transport coefficient q
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“Small shear viscosity implies strong jet quenching”
A. Majumder, B. Müller, X.N. Wang, PRL (2007)
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q̂ = 1.25T3

η/s
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measure both to explore transition from weak to strong coupling!

ˆ



q retains sensitivity to coupling strengthˆ

λ = g2SYMNc
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q̂ N = 4 supersymmetric Yang-Mills (SYM) theory

A. Majumder, B. Müller, X-N Wang PRL 99, 192301 (2007)
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Many possibilities for q near Tcˆ

Angular Dependence of Jet Quenching Indicates Its Strong Enhancement
near the QCD Phase Transition

Jinfeng Liao1,2,* and Edward Shuryak1,†

1Department of Physics and Astronomy, State University of New York, Stony Brook, New York 11794, USA
2Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
(Received 22 October 2008; revised manuscript received 19 February 2009; published 22 May 2009)

We study dependence of jet quenching on matter density, using ‘‘tomography’’ of the fireball provided

by RHIC data on azimuthal anisotropy v2 of high pt hadron yield at different centralities. Slicing the

fireball into shells with constant (entropy) density, we derive a ‘‘layer-wise geometrical limit’’ vmax
2 which

is indeed above the data v2 < vmax
2 . Interestingly, the limit is reached only if quenching is dominated by

shells with the entropy density exactly in the near-Tc region. We show two models that simultaneously

describe the high pt v2 and RA-A data and conclude that such a description can be achieved only if the jet

quenching is few times stronger in the near-Tc region relative to QGP at T > Tc. One possible reason for

such enhancement may be recent indications that the near-Tc region is a magnetic plasma of relatively

light color-magnetic monopoles.

DOI: 10.1103/PhysRevLett.102.202302 PACS numbers: 25.75.!q, 12.38.Mh

Introduction.—Recent experiments at the Relativistic
Heavy Ion Collider (RHIC) are dedicated to study possible
new forms of QCD matter, with increasing energy density.
In such collisions the produced matter equilibrates as
quark-gluon plasma (QGP)[1] and then cools down
through the near-Tc (M) phase (M for mixed, median,
magnetic [2]) into the usual hadronic phase (H). To probe
the created matter in an externally controllable way, like
using x ray for medical diagnosis is impossible. However,
high energy jets are internal probes: propagating through
the fireball, they interact—and thus obtain important in-
formation about the medium—as proposed long ago in
Refs. [3–5]. In heavy ion collisions this energy loss can
be manifested in the suppression of observed hadron spec-
tra at high transverse momenta pt, as well as in the sup-
pression of back-to-back di-hadron correlations with a
high-pt trigger, when compared with p-p and d-A colli-
sions. The ‘‘jet quenching’’ phenomenon is one of the
major discoveries by the RHIC experimental program [6].

The suppression is quantified by comparison of the
inclusive spectra d2NA-A=dptd! in ion-ion (A-A) collision
to a nucleon-nucleon (p-p) reference d2"N-N=dptd! via
the Nuclear Modification Factor RA-AðptÞ:

RA-AðptÞ $
d2NA-A=dptd!

TA-Ad
2"N-N=dptd!

(1)

with TA-A the nuclear overlap function which scales up a
single N-N cross section to A-A according to the expected
number of binary N-N collisions without modification.
Thus a RA-A smaller (larger) than unity means suppression
(enhancement) due to medium effect. At RHIC this ratio at
large pt > 6 GeV has been measured to be a constant,
about 0.2 for the most central Au-Au collisions. Accurate
calibration of hard processes in p-p and d-Au collisions, as
well as with hard photon measurements (which show no
quenching) [6] resulted in quite accurate knowledge of jet

production geometry, for any impact parameter b (or cen-
trality bins, often characterized by the number of nucleon
participants Npart in a collision event). While quenching is
firmly established as a final state effect, many efforts to
understand its microscopic mechanism are not yet conclu-
sive. Those include pQCD gluon radiation with Landau-
Pomeranchuk-Migdal (LPM) effect [7], synchrotronlike
radiation on coherent fields [8,9], elastic scattering loss
[10], etc. The fate of deposited energy discussed in
Refs. [11,12] led to predictions of ‘‘conical flow’’ corre-
lated with experimentally observed conical structures in
correlations involving 2 or 3 particles, for reviews see e.g.,
[13,14].
Jet tomography and the geometric limit.—In noncentral

collisions the overlap region of two colliding nuclei has an
almondlike shape: thus jets penetrating the fireball in dif-
ferent directions lose different amount of energy according
to their varying paths. Their yield distribution d2N=dptd#
in azimuthal angle # (with respect to the reaction plane)
for high pt hadrons thus provides a ‘‘tomography’’ of the
fireball [15–17]. We will focus on the second Fourier
coefficient

v2ðpt; bÞ $
R
2$
0 d# cosð2#Þ½d2N=dptd#&R

2$
0 d#½d2N=dptd#& (2)

depending on impact parameter b for large pt > 6 GeV
where hard processes dominate and dependence on pt is
weak [18].
Unexpectedly, measured v2ðpt; bÞ happen to be consid-

erably larger than what jet quenching models predicted.
The aim of our work is to provide simultaneous description
of both RA-A and v2 at high pt based on theoretically
known geometry of jet production and bulk matter evolu-
tion. One important concept of the analysis is the so-called
geometric limit, first suggested by one of us in [17]: the
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“[We find] the jet 
quenching is a few times 

stronger near Tc relative to 
the QGP at T > Tc.”
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What is the nature of the strongly coupled QGP?

• How does the strongly coupled quark-gluon plasma emerge from an 
asymptotically free theory of quarks and gluons?

• How rapidly does the quark gluon-plasma transition from the most strongly 
coupled system near Tc to a weakly coupled system of partons?

• What are the dynamical and other underlying changes to the medium as one 
varies the temperature? quasi-particles? excitations? strong fields?



Theoretical guidance on observables/sensitivity

Connection of measurement to the interesting and 
unknown medium properties of deconfined color charges 

is under active construction by many theorists

Just one example: March 3-4, 2012 Jet Collaboration 
meeting at Duke University (and followup meetings)

 Lots of interest from theory community

JETS@RHIC



Sensitivity to effective coupling

Chris Coleman-Smith (Duke)
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Ivan Vitev, et al
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Figure 1: Several figures
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What are the effective constituents of the QGP?
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Interaction of jet with medium

where ET;i (i ¼ 1; 2) denotes the transverse energy of the
leading and subleading jet, respectively. For back-to-back
dijet events in the vacuum, AJ is peaked at zero. The
ATLAS Collaboration measured this quantity by requiring
the trigger jet ET;1 > 100 GeV and the second jet in the
opposite hemisphere !!> "=2 with ET;2 > 25 GeV. To
proceed, we first generate vacuum dijet events from PYTHIA

[20] and obtain the distribution for the dijet asymmetry
factor AJ in pþ p events. The modification of each dijet
event in Pbþ Pb collisions is obtained as follows. For each
dijet event, we sample its production points according to
the distribution of the binary nucleon-nucleon collisions
in collisions of two Pb nuclei. For asymmetric dijets
(AJ > 0:1), the trigger bias is taken into account by
letting the higher energy jet propagate along the
shorter path (implying a smaller energy loss), and the other
jet to propagate along the other direction. For nearly sym-
metric jet pairs (AJ < 0:1), such a trigger bias does not
apply.

As expected, the number of strongly asymmetric dijets is
significantly increased by the medium evolution which
tends to let one jet lose more energy than the other due
to the different path lengths of the two jets in the medium.
The asymmetry of dijets is more prominent in the most
central Pbþ Pb collisions (left panel of Fig. 3) than in
midcentral events (right). The depletion of energy inside
the jet cone is a combination of collisional energy loss
experienced by all shower partons, radiation outside the jet
cone, and the scattering of radiated gluons into angle out-
side the jet cone. From our fit to the data we obtain the
average path-length weighted transport coefficient in cen-
tral collisions hq̂i ¼ hq̂Li=hLi ¼ 0:85 GeV2=fm, where
the average is over different production points and pro-
pagation directions. This corresponds to a value of
q̂ ¼ 2:1 GeV2=fm at the highest temperature 400 MeV in

Auþ Au collisions at RHIC, consistent with the system-
atic analysis performed in Ref. [25].
In summary, we have studied the evolution of a jet

shower propagating in a quark-gluon plasma and calcu-
lated the loss of energy contained in a given cone angle.
The medium modification of the shower spectrum and
shape is described by a differential equation that in-
corporates both collisional energy loss and transverse
momentum broadening. Our approach provides a good
description of the dijet asymmetry observed by the
ATLAS Collaboration in Pbþ Pb collisions at the LHC.
The values of the parton transport coefficients are similar
to those describing jet quenching at RHIC, extrapolated to
the higher matter density at the LHC. This suggests that the
quark-gluon plasma created at the LHC has similar prop-
erties as that studied by the RHIC experiments.
This work was supported in part by Grants No. DE-

FG02-05ER41367 and No. DE-SC0005396 from the U.S.
Department of Energy.
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Expected counts in a 20 week run

Au+Au
central 20%

p+p d+Au

>20 GeV

>30 GeV

>40 GeV

>50 GeV

107 jets
104 photons

106 jets
103 photons

107 jets
104 photons

106 jets
103 photons

105 jets
102 photons

106 jets
103 photons

105 jets 104 jets 105 jets

104 jets 103 jets 104 jets

Huge rates allow differential measurements with geometry
(v2, v3, A+B, U+U, … )  

precise control measurements (d+Au & p+p).
Over 80% as dijets into |η|<1

Cu+Au ~ Au+Au/5
U+U (tip-tip) ~ Au+Au/500
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Are jets in HI at RHIC dominated by fakes?

Over 1 billion HIJING 
events run, tagging of 

fragmentation jets, with 
full “ATLAS style” 

background subtraction 
method employed

arXiv:1203.1353
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Clean jets above an R-dependent ET lower bound
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Unfolding the effects of detector smearing
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Jet RAA to high pT
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Dijet asymmetry in central Au+Au at RHIC
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Unfolded γ+jet energy ratio in central Au+Au
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Full GEANT4 simulation

10 GeV/c electron showering in 
the electromagnetic calorimeter



Major technological advances: tungsten + SiPMs

formed tungsten+epoxy with embedded fibers



How well would this new technology work?
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• high rate calorimetric jet measurements at RHIC
– jets, dijets, γ-jets
– other very interesting possibilities: jet vN, jet-hadron correlations
– heavy quark jets: needs additional tracking beyond VTX (expressions of 

interest from Japanese RIKEN)
– exploit RHIC’s species flexibility to control initial state effects and geometry

• together with LHC constrain physics of energy loss
• innovative detector concept exploits recent technological advances
• we still aim to address the broader program in the decadal plan!
– staged approach includes quarkonia, forward spin and cold nuclear matter
– sPHENIX has path to evolve into EIC ePHENIX

• will submit MIE proposal to Steve Vigdor July 1.
• look forward to review in September!
–
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Jets at RHIC, really?
Effect of background fluctuations at RHIC and LHC

5

Toy model: use the independent emission model and p+p x-section

Effect of background fluctuations at RHIC and LHC

5

Anti-kT R=0.4

Independent Particle Emission Background Model

dNch/d!(LHC)=2.5 dNch/d!(RHIC)

<pT>(LHC)=1.2 <pT>(RHIC)

Central HI Collisions

Toy model: use the independent emission model and p+p x-section

Fluctuations at RHIC dominant due to steeply falling spectrum

Small effect on inclusive jet x-section at the LHC for pT
Jet>100 GeV/c

But: nth hard scattering effect has to be estimated and vn!

Jörn Putschke (HP’12, RHIC/AGS ’11); also Cacciari, Salaam, Soyez, Eur.Phys.J.C71:1692,2011

• smearing from very low pT

• R can be smaller than 0.4 (say, 0.2)

• agree that R = 0.4 at 20 GeV/c is B.G. 

• energy in a cone doesn’t look like a jet

• jets from soft fluctuations ⇒modified FF’s

• CMS study: jets have a high pT hadron

• ATLAS is pushing down to ~40 GeV/c with 
fake jet rejector



How would jet RAA at RHIC extend our pT reach?
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How would jet RAA at RHIC extend our pT reach?
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strong coupling calculations (and a bit of data)
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Ultra-cold Fermi gases

Hydro + IQCD calculation from Kovtun, 
Moore, and Romatschke 
arXiv:1104.1586
Hadron gas calculation from Prakash 
(almost 20 years ago) 1/T4.
Phys. Rept. 227 (1993) 321-366
Lattice QCD result from Harvey Meyer 
(gluodynamics) 
arXiv:0704.1801
QPM, finite µB calculation from 
Shrivistava and Singh 
arXiv:1201.0445
Semi-QGP calculation from Rob Pisarski 
with κ = 8 
arXiv:0912.0940
Ultra-cold Fermi gases from Adams, 
Carr, Schäfer, Steinberg, Thomas
arXiv:1205.5180v1

http://arxiv.org/abs/arXiv:1104.1586
http://arxiv.org/abs/arXiv:1104.1586
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http://arxiv.org/abs/arXiv:0912.0940
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