PHENIX upgrade plans and physics outlook

Dave Morrison (BNL)
for the PHENIX Collaboration
upgrades and physics on many timescales

- F/VTX, μTrig
- MPC-EX
- sPHENIX
- ePHENIX
the immediate physics of PHENIX
Run-14/15 Key Detector Upgrades (Silicon Vertex Detectors)

FVTX commissioning run in Run-12
> 96% live active area
Fast analysis results indicate performance exceeding specifications
Displaced vertex results for open heavy flavor from Run-12 Cu+Au expected soon

VTX commissioning run in Run-11
Preliminary p+p charm/beauty results
Repair plans in place for Run-14 readiness
Run-14 Au+Au @ 200 GeV

planning for 1.5/nb – driven by charm and beauty physics

FVTX first Au+Au data set

Example projected uncertainties in collisional dissociation model

Bands include unfolding systematic uncertainties
VTX projected uncertainties and sensitivity relative to heavy quark diffusion parameter

In the extreme scenario of beauty quarks following flow field, very different prediction
Example full unfolding from DCA electrons to parent mesons

Au+Au data set will also provide a factor of 2.5 more statistics for all measurements

For J/ψ and ψ', significantly improved mass resolution and background rejection

Definitive Heavy Quark + Quarkonia Au+Au Data Set
planning for Run-15

Run-15 Proposal (22 cryo-weeks)

- \(p+p @ 200 \text{ GeV with transverse polarization} \) for 9 weeks [Physics driven goal is 50 pb\(^{-1}\) recorded within \(|z| < 40 \text{ cm} \) and \(\langle P \rangle = 60\% \)]

- \(p+Au @ 200 \text{ GeV with transverse polarization} \) of the proton for 4 weeks [Physics driven goal is 150 nb\(^{-1}\) sampled within \(|z| < 40 \text{ cm} \) and \(\langle P \rangle = 60\% \)]

- Geometry studies with \(d+Au @ 200 \text{ GeV} \) and \(^3\text{He}+Au @ 200 \text{ GeV} \) for 1 week each [Physics driven goal is recording 1 billion minimum bias events events for each]

- \(p+Si, p+Cu @ 200 \text{ GeV} \) for 2 weeks each [Physics driven goal is 450 nb\(^{-1}\) and 225 nb\(^{-1}\), respectively, sampled within \(|z| < 40 \text{ cm} \) and \(\langle P \rangle = 60\% \)]

this plan fully exploits the uniqueness of RHIC
MPC-EX Upgrade

The PHENIX MPC Crystal Calorimeter (|\(\eta\)| = 3.1–3.8) has played a critical role in our forward (low-x) and transverse spin physics program.

MPC-EX upgrade adds novel silicon tracking / preshower detector to enable direct photon identification and \(\pi^0 \rightarrow \gamma \gamma\) to higher momentum.

Beam test in fall, and section available for integration tests in Run-14.

Full detector available for physics in Run-15.
Transverse Spin Physics

Single spin asymmetries A_N in transversely polarized $p+p$ collisions provide information on the parton’s transverse motion in the transversely polarized proton.

Approaches: TMDs (correlation between nucleon spin and parton k_T) and colinear twist-3 factorization (quark-gluon correlator $T_{q,F}$).

TMDs include Sivers and Collins functions.

Direct photon A_N – *no fragmentation* – almost exclusively sensitive to Sivers.

$p+p$ (transverse pol.) @ 200 GeV for 9 weeks (50 pb$^{-1}$ $|z|<40$ cm)
p+Au with transversely polarized protons

New theory developments – transverse polarization A_N in p+A scales with the saturation scale for $p_T < Q_s$

Completely unique RHIC access to saturation physics

p+Au measurement with projected uncertainties in 4 weeks (150/nb |z|<40cm)

Testing geometric scaling with Si, Cu target nuclei

Comparable uncertainties with 2 week runs

![Graph showing A_N^{p+Au}/A_N^{p+p} vs. p_T with data points and error bars for different conditions: $L^{p+p} = 50 \text{ pb}^{-1} |z|<40 \text{ cm}, P=60\%$ and $L^{p+Au} = 150 \text{ nb}^{-1} |z|<40 \text{ cm}, P=60\%$.](image)
Constraining Gluon nPDFs

Strong indications of low-x shadowing/saturation physics with d+Au J/ψ, e-μ correlations, h-h correlations, single muons, electrons, ...

All have final state interactions.

Golden channel? direct photon!

Using full statistical / systematic constraint method on EPS09 nPDFs, blue bands indicate projected measurement (1, 2σ level)
Open Heavy Flavor Probes of nPDFs and More

Another handle on gluon nPDF and critical baseline for quarkonia

Measure open charm and beauty at forward/backward rapidity with FVTX

Can we run p+Au and Au+p for systematic checks (a la LHC p+Pb)?
Geometry Test

DIS measures give geometry averaged nPDF

Utilized d+Au centrality measures to date…
Excellent opportunity to validate with direct photons nPDF of different nuclei
Quarkonia in Medium (Cold or Hot)

J/ψ and ψ’ are hard to explain w/ nPDF & O breakup

Longitudinal thickness Λ(τ_T) dictates the physics

Instead of d+Au centrality selection, another method to change nuclear density is with different targets
Also combined with improved S/B and for the first time ψ’ at forward and backward rapidity (FVTX)
Geometry selection in p/d+A

Are there auto-correlations beyond those already accounted for between centrality measure and particle of interest?

Two weeks of p+Si gives $<N_{\text{coll}}>$ \sim (d+Au 60-88% central), better statistical precision, and no centrality categorization required (i.e. definitive test)
Can a nearly inviscid fluid be created in p/d + A too?

Hydrodynamic flow? Glasma diagrams? Something else?

RHIC has unique access to geometric controls: p+A, d+A, \({}^{3}\text{He}+\text{A}\)
from PHENIX to sPHENIX
Use jets as a tool to investigate the constituents and dynamics of the sQGP in the region of strongest coupling through its transport coefficients.

\[\hat{q} \text{ retains sensitivity even when coupling is strong} \]

\[\eta/s \text{ saturates when coupling is strong} \]
Back to that plot of v_2 in d+Au for a moment ...

These developments in the past year underscore the need for measurements to address why and how perfect fluidity arises (jet probes).
a broad physics program of the sQGP

• What are the inner workings of the sQGP?

• Are the key degrees of freedom quasi-particles? excitations? other?

• full jet probes and high statistics dijets

• direct photons

• photon-jet, photon-hadron, jet-hadron correlations

• high statistics upsilons, high statistics open heavy flavor
RHIC provides vital discriminating power
what are the jet partons scattering from?

in the limit of infinitely massive scattering centers, all energy loss is radiative

\(\frac{T e}{q} \) vs. mass [GeV/c^2]

C. Coleman-Smith, B. Mueller
Jets? At RHIC? Absolutely!

central Au+Au @ 200 GeV: 10^6 jets/year with $E_T > 30$ GeV
80% of those jets have dijet partner in $|\eta| < 1$
sPHENIX in the PHENIX IR
the BaBar solenoid is recently available
due to cancelation of the proposed SuperB experiment in Italy
great foundation for sPHENIX. inner radius 140 cm, length 385 cm, field 1.5 T
it’s large, but it fits on a truck
transporting the g–2 magnet was great practice!
from sPHENIX to ePHENIX
ePHENIX takes aim at eRHIC physics!

physics case for EIC laid out in detail in white paper

eRHIC: 5–10 GeV electron beam
polarized p or 3He, nuclei as with RHIC
$L \sim 10^{33}\text{cm}^{-2}\text{s}^{-1}$
ePHENIX detector concept

sPHENIX solenoid and barrel EMCal and barrel HCal remain

passive shaping of solenoid fringe field
ePHENIX in the PHENIX IR
An exciting path forward of upgrades and physics!

plenty of opportunities for students, postdocs: physics, R&D, test beams and detectors!