Transverse Spin Results From STAR

Yuxi Pan

Department of Physics & Astronomy
University of California, Los Angeles

2014 RHIC & AGS Annual Users Meeting
Outline

1. STAR’s capabilities on transverse spin measurements
2. Status of STAR transverse spin analyses
3. STAR upgrades
STAR’s capabilities on transverse spin measurements

The Solenoid Tracker At RHIC (STAR)

- Full azimuthal coverage
- -1 < η < 1 coverage
- Uniform acceptance for all beam energies
- Excellent PID

Detector capabilities

- **Central Region** (−1 < η < 1): \(\pi^\pm/K/p \) ID by dE/dX and TOF, \(e^\pm/\gamma \) by EMCAL, jets
- **Mid-Forward** (1 < η < 2): \(\pi^0, \eta, \) direct \(\gamma, \) EM-jets from Endcap-EMCAL
- **Forward** (2.5 < η < 4.0): \(\pi^0, \eta, \) EM-jets by Forward Meson Spectrometer
Central Region ($-1 < \eta < 1$)
- inclusive jet A_N, Collins/IFF asymmetries A_{UT}
- W^\pm/Z^0 boson A_N

Mid-Forward ($1 < \eta < 2$)
- π^0, η, EM-jets A_N

Forward ($2.5 < \eta < 4.0$)
- π^0, η A_N
- topology dependence of A_N through EM-jet/π^0, forward-forward/forward-central correlations
Outline

1. STAR’s capabilities on transverse spin measurements

2. Status of STAR transverse spin analyses
 - Mid-rapidity inclusive jet A_N
 - Collins/IFF Asymmetries
 - W^{\pm}/Z^0 boson A_N
 - Forward π^0/EM-jet A_N on FMS

3. STAR upgrades
 - refurbished FMS + Preshower
 - Forward tracking + calorimeter for 2020
Mid-rapidity inclusive jet A_N

- Corresponding parton-jet p_T lower by 0.6-1.4 GeV/c
- Sensitive to Sivers function

$$\Delta^N f_a/A ↑ \otimes f_b/B$$

$$T_F^q(x, x) = - \int d^2\vec{p}_\perp \frac{2}{M} f_{1T}^q(x, \vec{p}_\perp) |_{SIDIS}$$

- Gluon-Gluon scattering dominates due to low x_T

D’Alesio et al.

Phys. Rev. D 83, 034021
Outline

1. STAR’s capabilities on transverse spin measurements

2. Status of STAR transverse spin analyses
 - Mid-rapidity inclusive jet A_N
 - Collins/IFF Asymmetries
 - W^\pm/Z^0 boson A_N
 - Forward π^0/EM-jet A_N on FMS

3. STAR upgrades
 - refurbished FMS + Preshower
 - Forward tracking + calorimeter for 2020
Collins Asymmetries at 200 GeV

- 2-scale process described within TMD scheme by $h_1^a \otimes f_b/B \otimes \Delta D_{\pi/q \uparrow}$ assuming factorization

- 2012 STAR data provide higher precision and reduced systematic uncertainties. Preliminary results aimed for SPIN2014
Collins Asymmetries at 500 GeV

- Moments of $\sin(\phi_s - \phi_h)$ sensitive to quark Collins asymmetry

- Increased gluonic subprocess at $\sqrt{s} = 500$ GeV leads to small Collins asymmetries until large z_h

Phys. Rev. D83, 034021
Collins Asymmetries at 500 GeV

- Moments of $\sin(\phi_s - 2\phi_h)$ sensitive to linearly polarized gluons
- Gluon Collins-like asymmetries completely unconstrained
Asymmetries persist in collinear scheme through
\[h_1^a/A_1 \otimes f_b/B \otimes H_{1,ot} \]

First signal of transversity in pp collisions

A. Bacchetta et al.
Phys. Rev. D70, 094032

\[\hat{S}_B \]
\[\hat{P}_A \]
\[\hat{P}_C \]

\[\phi_{s_h} \]
\[\phi_{R_z} \]
\[\phi_{R_{CT}} \]

\[A_{UT}^{\sin\theta} \]

\[A_{UT}^{\sin\theta} \]

\[M_{inv}^{\pi^+\pi^-} \]

\[\eta_{\pi^+\pi^-} \]
STAR’s capabilities on transverse spin measurements
Status of STAR transverse spin analyses
STAR upgrades
Summary

IFF Asymmetry projections with 2012 STAR Data @ 200 GeV

Statistical uncertainties greatly reduced.

Analyses of 200 GeV and 500 GeV data are ongoing

Preliminary results aimed for SPIN2014
1. STAR’s capabilities on transverse spin measurements

2. Status of STAR transverse spin analyses
 - Mid-rapidity inclusive jet A_N
 - Collins/IFF Asymmetries
 - W^\pm/Z^0 boson A_N
 - Forward π^0/EM-jet A_N on FMS

3. STAR upgrades
 - refurbished FMS + Preshower
 - Forward tracking + calorimeter for 2020
The sign change of Sivers function

Critical test for TMD factorization and evolutions

\[Sivers_{SIDIS} = -Sivers_{DY} = -Sivers_{W^\pm/Z^0} \]

\[A_N^{\gamma N} \] measures the sign change through Twist-3

\[A_{UT}^{Sivers/SIDIS}, A_N^{DY}, \text{ and } A_N^{W^\pm/Z^0} \] together test TMD evolutions
W± identification

- **W±** identified via high p_T isolated electrons + p_T imbalance on the away-side
- 2011 500GeV pp collisions, $\mathcal{L} = 25pb^{-1}$
W± kinematics reconstruction

- \(P_T^{W} = -P_T^{\text{recoil}} \) (MC corrected)
- \(P_Z^{W} = P_Z^{e} + P_Z^{\nu} \), neutrino \(P_Z \) calculated by
 \[
 M_W^2 = (E_e + E_\nu)^2 - (\vec{p}_e + \vec{p}_\nu)^2
 \]
- Neutrino \(P_T \) is reconstructed from missing \(P_T \)

Good agreement between data/MC after \(P_T \) correction
W±/Z0 boson A_N From 2011 STAR Data

M.G. Echevarria et.al Phys. Rev. D 89, 074013
and priv. comm.

sea quark Sivers function constrained by positivity bound
STAR's capabilities on transverse spin measurements
Status of STAR transverse spin analyses
STAR upgrades
Summary

W^\pm/Z^0 A_N Projections for 2016

AN Collins/IFF Asymmetries
W^\pm/Z^0 boson A_N
Forward π^0/EM-jet A_N on FMS
Outline

1. STAR’s capabilities on transverse spin measurements

2. Status of STAR transverse spin analyses
 - Mid-rapidity inclusive jet A_N
 - Collins/IFF Asymmetries
 - W^\pm/Z^0 boson A_N
 - Forward π^0/EM-jet A_N on FMS

3. STAR upgrades
 - refurbished FMS + Preshower
 - Forward tracking + calorimeter for 2020
Forward Meson Spectrometer

- Pb Glass calorimeter provides EM coverage in $2.5 < \eta < 4.0$
- small cells: $3.81 \times 3.81 cm^2$
 large cells: $5.81 \times 5.81 cm^2$
- detect π^0, η and jet-like events
π⁰ A_N

- Isolated π⁰ from 2011 data shows flat p_T dependence
- Analysis of inclusive π⁰ A_N is ongoing
- A successful twist-3 model (initial-/final-state, or both) would have to explain SSA in pp and SIDIS with the same set of parameters, plus evolutions

![Graph showing A_N vs p_T for π⁰](image)

![Graph showing A_N vs p_T for π⁰](image)
A_N for forward jet-like events

- Apply Anti-k_T jet finding on FMS photons, $R = 0.7$

- Isolated π^0 has larger asymmetries than jet-like events

![Graph showing A_N vs EM-Jet Energy (GeV)]
A_N for forward jet-like events

- Apply Anti-k_T jet finding on FMS photons, $R = 0.7$
- Isolated π^0 has larger asymmetries than jet-like events
- Study dependence of A_N on number of photons and away-side jet activities
A_N for forward jet-like events

- Apply Anti-k_T jet finding on FMS photons, $R = 0.7$
- Isolated π^0 has larger asymmetries than jet-like events
- Study dependence of A_N on number of photons and away-side jet activities with and without a central EM-jet $p_T^{EMjet} > 2.0$ GeV
A_N for forward jet-like events

- Apply Anti-k_T jet finding on FMS photons, $R = 0.7$
- Isolated π^0 has larger asymmetries than jet-like events
- Study dependence of A_N on number of photons and away-side jet activities

with and without a correlated central EM-jet on the away-side $p_T^{EMjet} > 2.0$ GeV
1. STAR’s capabilities on transverse spin measurements

2. Status of STAR transverse spin analyses
 - Mid-rapidity inclusive jet A_N
 - Collins/IFF Asymmetries
 - W^\pm/Z^0 boson A_N
 - Forward π^0/EM-jet A_N on FMS

3. STAR upgrades
 - refurbished FMS + Preshower
 - Forward tracking + calorimeter for 2020
FMS lead glass was exposed to sunlight to recover from radiation damage
first two layers of preshower provides γ/charged-track separation and (x,y)
3rd layer of preshower separates electrons and γ from charged hadrons
Direct γA_N for Run15

- $p^\uparrow + p @ \sqrt{s} = 200$ GeV, $\mathcal{L} = 40 pb^{-1}$, pol. = 60%
- Track matching between FMS and layer 1 & 2 of preshower
- $E_{\text{cluster}} > 15$ GeV, $p_T > 2.0$ GeV
Outline

1. STAR’s capabilities on transverse spin measurements

2. Status of STAR transverse spin analyses
 - Mid-rapidity inclusive jet A_N
 - Collins/IFF Asymmetries
 - W^\pm/Z^0 boson A_N
 - Forward π^0/EM-jet A_N on FMS

3. STAR upgrades
 - refurbished FMS + Preshower
 - Forward tracking + calorimeter for 2020
STAR’s capabilities on transverse spin measurements
Status of STAR transverse spin analyses
STAR upgrades
Summary

Forward Tracking & Calorimeter System for 2020

- ECAL: W powder + scintillating filters
 \[\sigma_E / E = 0.11/\sqrt{E} + 0.007 \]
- HCAL: Lead plates + scintillating tiles
 \[\sigma_E / E = 0.58/\sqrt{E} + 0.007 \]
- Prototypes tested extensively at Fermilab

- Silicon micro-strip technology based on experience from STAR IST
- GEM technology from FGT design
- Still in early stage of development
Summary

- STAR continues to deliver high quality transverse spin measurements for
 - Mid-rapidity jet A_N to probe gluon Sivers function
 - Mid-rapidity correlations to access transversity
 - W^\pm/Z_0 asymmetries to test TMD factorization & evolutions
 - A_N for forward hadron/jet-like events to shed light on the origins of the large transverse spin effects

- STAR upgrades in the (near-) future will enable new exciting measurements
 - Forward direct photon
 - Forward jet, di-hadrons...

Stay tuned!
\[\frac{d\sigma_{\text{pol}}}{d\sigma_{\text{unpol}}} = 1 + P_1 P_2 \cdot A\Sigma(\eta, p_T) + \cos(\phi) \cdot [P_1 \cdot A_N(\eta, p_T) - P_2 \cdot A_N(-\eta, p_T)] + P_1 P_2 \cdot \cos(2\phi) \cdot A_{TT}(\eta, p_T) \]