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Outline

1. Review hydro in A+A to set notation

2. Review what is seen in p+A and amazing similarity to A+A results

- Striking similarity shocked the heavy ion world.

3. Give a zeroth order theory/explanation for the similarity.



Ultra-quick review: flow harmonics and fluctuations in AA

Quantify the init. e-dense w. eccentricity:

εn = −〈r
n cos(2(φs − Φn))〉

〈rn〉
and orientation angle Φn:

Φn = orientation angle of n-th distortion:

Expand the observed momentum spectra in a fourier series:

dN

dφp
= N (1 + 2 v2 cos(2(φp −Ψ2)) + . . .+ v1, v3, v4, v5, etc)



Linear response theory for v2 and v3

A schematic picture of initial geometry

In heavy ion collisions: without/with fluctuations

⇡ Gaussian ⇡ Gaussian + fluctuations?

4In a linear response approximation the v2 comes from geometric correl in the initial state:

v2e
i2Ψ2 = k2 ε2e

i2Φ2︸ ︷︷ ︸
Linear response to deformation

So the rms v2 is a combination of the linear response coefficients and geometry√〈
v2

2

〉
= v2{2}︸ ︷︷ ︸

rms v2

= k2︸︷︷︸
response

×
√〈

ε22
〉︸ ︷︷ ︸

geometric flucts

Response coefficients k2, k3 computed with hydro or kinetics and depend on `mfp/L



Comparing linear response and event by event hydro (H. Niemi et al, arXiv:1212.1008)
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FIG. 7: (Color online) Event-by-event correlation of the participant plane (PP,(a)) and event plane (EP,(b)) angles with the
reaction plane (RP), as well as the correlation between participant and event plane angles (c), for di�erent harmonic eccentricity
and flow coe�cients. The same 6000 events as in Fig. 4 were analyzed.

is mostly a collective flow response to this geometric de-
formation; event-by-event fluctuations contribute to "2

(and thus v2), but in general do not dominate them.

The behavior of �PP
4 in Fig. 7a is interesting because

it is on average strongly “anti-correlated” with the re-
action plane, in the sense that it points (on average)
at 45� relative to the x-axis. The geometric reason for
this has already been discussed above in subsection III D.
On the other hand, Fig. 7b shows that the angle �EP

4

points on average into the reaction plane. This correla-
tion of �EP

4 with the reaction plane is somewhat weaker
than the anti-correlation of �PP

4 with that plane seen in
panel (a). Still, it suggests that quadrangular flow v4

does not, on average, develop predominantly in the di-
rection of the steepest pressure gradient associated with
"4, but in the direction of steepest "2-induced pressure
gradient. This can be understood as follows: since "2

generates a second harmonic deformation of the flow ve-
locity profile which elliptically deforms the exponent of
the flow-boosted Boltzmann factor exp[�p · u(x)/T (x)]
describing the local thermal momentum distribution of
particles, it leads to harmonic contributions v2k of all
even orders n =2k in the momentum distributions of the
finally emitted particles [50]. Fig. 7b suggests that, on
average, this e↵ect wins over initial-state quadrangular
deformation e↵ects.

Figure 7c, however, in which we analyze directly the
correlation between the event and participant plane an-
gles, paints a more subtle picture. It shows, surprisingly,
a correlation peak at zero relative angle between �EP

4 and
�PP

4 , whereas the above discussion should have led us to
expect a correlation peak at 45�. The resolution of this
paradox is presented in the next subsection: The relative
importance of geometric and fluctuation-induced contri-
butions to "n, vn, and their associated angles changes
with collision centrality, with geometry playing a rela-
tively larger role in peripheral collisions. One should
therefore look at the angle correlations as a function of
collision centrality. One finds that the correlation func-
tion peaks in Figs. 7a,b for the 4th-order angles relative

to the reaction plane are almost entirely due to geometric
e↵ects in peripheral collisions, while in central collisions
both �PP

4 and �EP
4 are fluctuation-dominated and thus

essentially uncorrelated with the reaction plane. On the
other hand, precisely because in central collisions geomet-
ric e↵ects such as geometrically driven elliptic flow do not
dominate the hydrodynamic response to the fluctuation-
driven higher-order eccentricities, �EP

4 and �PP
4 remain

relatively strongly correlated in near-central collisions.
This is the reason for the peak at 0� for n =4 in Fig. 7c.
(A hint of the “anti-correlation” at 45� is still visible in
Fig. 7c, and it would be stronger if we had not (for unre-
lated reasons) strongly oversampled central collisions in
our mixed-centrality sample.)

We close this discussion with the following additional
observations about Fig. 7c: (i) The second-order partici-
pant and event planes are much more strongly correlated
with each other than either one of them is with the re-
action plane. This shows that even in very central colli-
sions, where the source ellipticity is mostly fluctuation-
driven and its angle therefore only weakly correlated with
the reaction plane, elliptic flow develops event-by-event
in the direction of the short axis of the ellipsoid. (ii)
Even though the angles associated with "3 and v3 are
uncorrelated with the reaction plane (Figs. 7a,b), they
are strongly correlated with each other. This indicates
that v3 is mostly driven by "3, especially in the more
central collisions, with relatively little interference from
other harmonics. (iii) The 5th-order event and partici-
pant plane angles show correlation peaks both at 0 and
⇡/5. As we will see in the following subsection, the for-
mer results from central and the latter from peripheral
collisions. The peak at ⇡/5 indicates significant cross-
feeding between modes with n =2, 3, and 5.

Figure 13. There is a strong event-by-event correlation between event planes  n and

participant planes �n for n  3 (left [124]), but not for n � 4 (right [77]), which has a

non-linear contribution [76]. 4

FIG. 1. �2 and v2 of pions in the 20 � 30 % centrality class using di�erent initializations and viscosities. a) sBC and �/s = 0,
b) sBC and �/s = 0.16 and c) sWN and �/s = 0.16.

FIG. 2. �3 and v3 of pions in the 20 � 30 % centrality class using di�erent initializations and viscosities. a) sBC and �/s = 0,
b) sBC and �/s = 0.16 and c) sWN and �/s = 0.16.

FIG. 3. �4 and v4 of pions in the 20 � 30 % centrality class using di�erent initializations and viscosities. a) sBC and �/s = 0,
b) sBC and �/s = 0.16 and c) sWN and �/s = 0.16.

As can be seen in these figures, the v2 and v3 coe�cients display a strong linear correlation to their corresponding
initial-state coe�cients for all cases considered. This is confirmed by the values of the linear correlation coe�cient
c (v2, ✏2) ⇠ c (v3, ✏3) ⇠ 1, as shown in the Figures (top left corner). As for any two variables we can write

vn = Cn✏n + �n, (9)

where Cn = hvniev / h✏niev, and consequently, h�niev = 0. The values of Cn are shown in Figs. 1 and 2. For n = 2
a linear relation, v2 = C2✏2, is approximately satisfied event-by-event with only ⇠ 10% deviations from this relation
at a given ✏2. On the other hand, an event-by-event linear relation between v3 and ✏3 is not satisfied well, with v3

deviating ⇠ 50% from v3 = C3✏3 at a given ✏3.
In all the cases considered above, there is basically no linear correlation between ✏4 and v4, see Fig. 3. At least

one reason for this behavior is that there is also correlation between ✏22 and v4, which can be of the same order or
larger than c(✏4, v4): c(✏22, v4) = 0.40 (sBC, ⌘/s = 0 ), c(✏22, v4) = 0.69 (sBC, ⌘/s = 0.16) and, c(✏22, v4) = 0.46 (sWN,

Figure 14. 2D histogram of event-by-event values of v2 and "2, showing strong

correlation between the two quantities, which increases with viscosity (taken from

[125]).

It has been seen that for harmonics n  3, on an event-by-event basis, the

participant plane �n correlates well with the final event plane  n (see Fig. 13), while the

magnitude vn is proportional to "n (see Fig. 14) [124, 126]. This can be interpreted as

hydrodynamic evolution being most sensitive to the large scale structure represented by

the lowest momentum mode of the initial transverse density with the correct symmetry,

and insensitive to the small scale structure represented by higher cumulants. That the

correlation gets better with viscosity [125] supports this interpretation (see Fig. 14).

These are not exact relations. One can, for example, engineer an initial condition

for which the lowest cumulant vanishes and which still has a sizable flow coe�cient [127].

ε2 is a good predictor of the hydrodynamic response



Measuring flow in AA

and

Detectors

see 

a splash

of particles

correlated 

particles
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       here!

Y

Angular Correlations in AA generally attributed to flow:

C(φ1 − φ2) =
dN

dφ1dφ2
/

(
dN

dφ1

dN

dφ2

)



Gunther Roland RBRC Workshop, Apr 15-17, 2013 

pPb vs PbPb 
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Can extract a v2 and a v3 from these data . . . (CMS Data)

blue circles: Hv282<LPbPb, rscl
red triangles: Hv282<LpPb
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Questions:

1. Is the mechanism for the correlation the same in pPb and PbPb?

2. Is hydrodynamics the origin of pPb correlations?

3. How important are non-equilibrium effects for pPb? PbPb?

Tried to answer these questions with Gokce Basar



Flow in p+A and A+A:

v2︸︷︷︸
Measured E by E flow

= k2︸︷︷︸
Response coefficient

× ε2︸︷︷︸
geometry

1. Are the response coefficients the same?

2. Is the geometry or ε2 the same? ε3?



Part I: Flow Response Coefficients



What is the `mfp/L in high multiplicity p+A and A+A?
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Fig. 6. Saturation of gluons in a hadron. A view of a hadron head on as x decreases.

tions, the parton distribution functions at fixed Q2 saturate, in the sense

of showing only a slow, logarithmic, increase with 1/x11,12,13,14,15,16.

(See also Refs. 17,18,19,20 for recent reviews and more references.) For a
given Q2, this saturation occurs if x is low enough, lower than some crit-
ical value xs(Q

2). Converserly, for given x, saturation occurs for trans-
verse momenta below some critical value Q2

s(x), defined as

Q2
s(x) = αsNc

1

πR2

dN

dy
, (1.8)

where dN/dy is the gluon distribution at y = yhadron − ln(1/x). Only
gluons are included, since, at high energy, the gluon density grows much
faster than the quark density, and is the driving force towards saturation.
This explains why in the following we shall focus primarily on the gluons.
In Eq. (1.8), πR2 is the hadron area in the impact parameter space (or
transverse plane). This is well defined provided the wavelength of the
probe is small compared to R, which we assume throughout. Finally,
αsNc is the color charge squared of a single gluon. Thus, the “saturation
scale” (1.8) has the meaning of the average color charge squared of the
gluons per unit transverse area per unit rapidity.

Since the gluon distribution increases rapidly with the energy, as
the HERA data suggests, so does the saturation scale. For high enough
energy, or small enough x,

Q2
s(x) " Λ2

QCD , (1.9)

1. Throw Nclust clusters in in the transverse plane:

- This defines a momentum scale (the saturation momentum)

Q2
s ∝

Nclust

πL2
T

(LT = transverse size)

2. Assume that this is the only momentum scl for 1D expansion, 1/Qs � τ � LT

`mfp ∝
1

Qs
∝ 1

To



What is the `mfp/L in high multiplicity p+A and A+A?
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tions, the parton distribution functions at fixed Q2 saturate, in the sense

of showing only a slow, logarithmic, increase with 1/x11,12,13,14,15,16.

(See also Refs. 17,18,19,20 for recent reviews and more references.) For a
given Q2, this saturation occurs if x is low enough, lower than some crit-
ical value xs(Q

2). Converserly, for given x, saturation occurs for trans-
verse momenta below some critical value Q2

s(x), defined as

Q2
s(x) = αsNc

1

πR2

dN

dy
, (1.8)

where dN/dy is the gluon distribution at y = yhadron − ln(1/x). Only
gluons are included, since, at high energy, the gluon density grows much
faster than the quark density, and is the driving force towards saturation.
This explains why in the following we shall focus primarily on the gluons.
In Eq. (1.8), πR2 is the hadron area in the impact parameter space (or
transverse plane). This is well defined provided the wavelength of the
probe is small compared to R, which we assume throughout. Finally,
αsNc is the color charge squared of a single gluon. Thus, the “saturation
scale” (1.8) has the meaning of the average color charge squared of the
gluons per unit transverse area per unit rapidity.

Since the gluon distribution increases rapidly with the energy, as
the HERA data suggests, so does the saturation scale. For high enough
energy, or small enough x,

Q2
s(x) " Λ2

QCD , (1.9)

3. Assume that the multiplicity is proportional to the number of clusters

dN

dy
∝ Nclust

4. Find that `mfp/LT (at early time) is fixed by dN/dy

`mfp

LT
∝ 1

ToLT
∝ 1

QsLT
∝ 1√

dN/dy

`mfp/LT is the same in p+A and A+A at fixed multiplicity!



What is the mean `mfp/LT when the flow develops, at τ ∼ LT ?

1. Need to estimate `mfp/LT at time τ ∝ LT
2. Using, Bjorken estimate:

`mfp ∝
1

T (τ)
∝ 1

To

(
τ

τo

)1/3

Find after algebra
`mfp

L

∣∣∣∣
τ∼LT

∝ 1(
dN
dy

)1/3

Find (again) that `mfp/LT is the same in p+A and A+A at fixed multiplicity



v2/ε2 the same at fixed multiplicity – compare RHIC and LHC AA events

Ann Sickles – Quark Matter

31

v2/ε2 same at fixed multiplicity



Flow in p+A and A+A:

v2︸︷︷︸
Measured E by E flow

= k2︸︷︷︸
Response coefficient

× ε2︸︷︷︸
geometry

1. Are the response coefficients the same?

Yes. The `mfp/LT is the same at fixed multiplicity

2. Is the geometry or ε2 the same? ε3?

Part II. Geometric fluctuations



Understanding the fluctuating geometry in A+A? Bhalerao and Ollitrault ’06
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Eccentricity fluctuations and elliptic flow at RHIC

Rajeev S. Bhalerao1 and Jean-Yves Ollitrault2

1Department of Theoretical Physics, TIFR, Homi Bhabha Road, Colaba, Mumbai 400 005, India
2Service de Physique Théorique, CEA/DSM/SPhT, Unité de recherche associée au CNRS,

F-91191 Gif-sur-Yvette Cedex, France.
(Dated: February 6, 2008)

Fluctuations in nucleon positions can affect the spatial eccentricity of the overlap zone in nucleus-
nucleus collisions. We show that elliptic flow should be scaled by different eccentricities depending
on which method is used for the flow analysis. These eccentricities are estimated semi-analytically.
When v2 is analyzed from 4-particle cumulants, or using the event plane from directed flow in a
zero-degree calorimeter, the result is shown to be insensitive to eccentricity fluctuations.

PACS numbers: 25.75.Ld, 24.10.Nz

1. Introduction
Elliptic flow, v2, is one of the key observables in

nucleus-nucleus collisions at RHIC [1]. It originates
from the almond shape of the overlap zone (see Fig. 1)
which produces, through unequal pressure gradients, an
anisotropy in the transverse momentum distribution [2],
the so-called v2 ≡ 〈cos 2φ〉, where φ’s are the azimuthal
angles of the detected particles with respect to the reac-
tion plane.

Preliminary analyses of v2 in Cu-Cu collisions at RHIC
[3, 4, 5], presented at the QM’2005 conference, reported
values surprisingly large compared to theoretical expec-
tations, almost as large as in Au-Au collisions. It was
shown by the PHOBOS collaboration [4] that fluctua-
tions in nucleon positions provide a natural explanation
for this large magnitude. The idea is the following: The
time scale of the nucleus-nucleus collision at RHIC is so
short that each nucleus sees the nucleus coming in the op-
posite direction in a frozen configuration, with nucleons
located at positions whose probabilities are determined
according to the nuclear wave function. Fluctuations in
the nucleon positions result in fluctuations in the almond
shape and orientation (see Fig. 1), and hence in larger
values of v2.

In this Letter, we discuss various definitions of the ec-
centricity of the overlap zone. We show that estimates
of v2 using different methods should be scaled by appro-
priate choices of the eccentricity. We then compute the
effect of fluctuations on the eccentricity semi-analytically
to leading order in 1/N , where N is the mean number
of participants at a given centrality. A similar study was
recently performed by S. Voloshin on the basis of Monte-
Carlo Glauber calculations [6].

2. Eccentricity scaling and fluctuations
Elliptic flow is determined by the initial density pro-

file. Although its precise value depends on the detailed
shape of the profile, most of the relevant information is
encoded in three quantities: 1) the initial eccentricity of
the overlap zone, ε, which will be defined more precisely
below; 2) the density n, which determines pressure gradi-
ents through the equation of state (by density, we mean
the particle density, n, at the time when elliptic flow de-

x

y

x’

y’

FIG. 1: Schematic view of a collision of two identical nuclei,
in the plane transverse to the beam direction (z-axis). The
x- and y-axes are drawn as per the standard convention. The
dots indicate the positions of participant nucleons. Due to
fluctuations, the overlap zone could be shifted and tilted with
respect to the (x, y) frame. x′ and y′ are the principal axes
of inertia of the dots.

velops; this time is of the order of the transverse size R.
Quite remarkably, the density thus defined varies little
with centrality, and has almost the same value in Au-Au
and Cu-Cu collisions at the same colliding energy per
nucleon [7]); 3) the system transverse size R, which de-
termines the number of collisions per particle. v2 scales
like ε for small ε, that is, v2 = εf(n, R).

This proportionality relation is only approximate.
However, hydrodynamical calculations [7] show that it is
a very good approximation in practice for nucleus-nucleus
collisions. Eccentricity scaling holds for integrated flow
as well as for the differential flow of identified particles.
In the latter case, the function f(n, R) also depends on
the mass, transverse momentum and rapidity of the par-
ticle.

Eccentricity scaling of v2 is generally believed to be a
specific prediction of relativistic hydrodynamics. In the
form above, the scaling is expected to be more general: it
does not require thermalization, as implicitly assumed by
hydrodynamics. If thermalization is achieved, that is, if
the system size R is much larger than the mean free path
λ, then the scaling is stronger: v2/ε no longer depends
on R, but only on the density n [7].

• Throw Nclust according to the average nuclear distribution with statistics:

〈δn(x)δn(y)〉 = n̄(x)δ(2)(x− y) .

• Calculate ε2{2} =
√〈

ε22
〉

〈
ε22
〉
AA

= ε2s︸︷︷︸
ave. geometry

+
〈
δε22
〉︸ ︷︷ ︸

fluctuations

〈δε22〉AA ≡
〈
r4
〉
AA

Nclust 〈r2〉2AA

Reproduces the results of more complex Glauber models



Understanding the fluctuating geometry in p+A?

• In p+A the average geometric eccentricity is zero, εs = 0

〈
ε22
〉2

pA︸ ︷︷ ︸
only flucts

= 〈δε22〉pA︸ ︷︷ ︸
only flucts

≡
〈
r4
〉
pA

Nclust 〈r2〉2pA

• So to compare to p+A, we scale out the average geometry out of the A+ A system

(v2{2})PbPb,rscl︸ ︷︷ ︸
only flucts

≡
√

1− ε2s〈
ε22
〉
AA

(v2{2})PbPb .

• With this rescaling we expect

(v2{2})PbPb,rscl ≡k2

√〈
δε22
〉
AA

(v2{2})pA ≡k2

√〈
δε22
〉
pA

Lets compare (v2{2})PbPb,rscl to (v2{2})pPb . . .



Comparing fluctuation driven v2 . . . (CMS Data)

blue circles: Hv282<LPbPb, rscl
red triangles: Hv282<LpPb

ÊÊ
ÊÊ Ê Ê

Ê ÊÊÊÊÊ Ê
ÚÚÚÚ

Ú Ú Ú ÚÚÚÚÚ Ú

0 50 100 150 200 250 300 350
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Ntrkoffline

ÊÊ
ÊÊ
Ê Ê

Ê ÊÊÊÊÊ
Ê

ÚÚ Ú Ú
Ú Ú Ú Ú Ú Ú Ú Ú Ú

blue circles: Hv282<LPbPb
red triangles: Hv282<LpPb

0 50 100 150 200 250 300 350
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Ntrkoffline

A + A

p + A

Original Rescaled v2

Fluctuation driven v2’s are equal to 5% accuracy!



Ratio of fluctuation v2’s and eccentricities

• Fluctuation driven v2

(v2{2})pPb

(v2{2})PbPb
=
k2

k2

√
〈δε22〉pA
〈δε22〉AA

=

√
(〈r4〉 / 〈r2〉2)pA

(〈r4〉 / 〈r2〉2)AA

• Don’t know the radial profile in pA. Does it matter ?

• Ratio of fluct-driven v2 is determined by a square root of a double ratio!

– Very different profiles give the almost same answer√
〈δε22〉hard−sphere

〈δε22〉Gaussian
≈ 0.85

• A gaussian profile for pA seems most likely to me



Comparing a gaussian profile in pA to the nuclear (woods-saxon) geometry
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Expect p+A and A+A to have the same eccentricities for δε2

and for a conformal response . . . the same v2



v3 works the same way . . .

(v3{2})pA
(v3{2})AA

=
k3

√〈
δε23
〉
pA

k3

√〈
δε23
〉
AA︸ ︷︷ ︸

k3 same

=

〈r6
〉
pA
/
〈
r3
〉2

pA

〈r6〉AA / 〈r3〉2AA

1/2

︸ ︷︷ ︸
root of geometric double ratio
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Flow in p+A and A+A:

v2︸︷︷︸
Measured E by E flow

= k2︸︷︷︸
Response coefficient

× ε2︸︷︷︸
geometry

1. Are the response coefficients the same?

Yes. The `mfp/LT is the same at fixed multiplicity

2. Is the geometry or ε2 the same? ε3?

Yes, for any independent cluster type model after taking out ave. geom.

Expect the vn’s the same



Transverse momentum dependence of elliptic and triangular flow: p+A and A+A

dN

pTdpTdφp
=
No

2π
(1 + 2v2(pT ) cos(2(φp −Ψ2)) + . . .)

• Conformal scaling argument:

(v2(pT )) = ξ2︸︷︷︸
response coefficient

× (ε2)︸︷︷︸
geometry

× f(pT / 〈pT 〉)︸ ︷︷ ︸
universal function at fixed dN/dy

• So with the measured ratio: (ALICE)

κ =
〈pT 〉pA
〈pT 〉AA

=
LAA
LpA

' 1.3

• Expect: [
v2{2}(pT )

]
pPb

=
[
v2{2}

(pT
κ

)]
PbPb,rscl
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V3 in p+A and A+A
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𝑣௡  scaling between the p+Pb and Pb+Pb systems. 
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 𝑣ଶ values, after 
scaling the 𝑝் 
axis, differ only 
by a scale factor 
between the two 
systems. 
 

 Suggests a similar 
origin for 𝑣ଶ in 
the two systems 
and similar 
medium response 
to initial 
geometry? 
 
 

      

S. Radhakrishnan -- Quark Matter



HBT Radii and Conformal Rescaling (ALICE Collaboration)

• From the confomal analysis

RAA
RpA

=
〈pT 〉pA
〈pT 〉AA

= 1.3Freeze-out radii in pp, p–Pb and Pb–Pb from three-pion cumulants ALICE Collaboration

(a) Low kT and KT,3 (b) High kT and KT,3

Fig. 4: Two- and three-pion Edgeworth fit parameters versus hNchi in pp, p–Pb and Pb–Pb collision
systems for low and high kT and KT,3 intervals. Top panels show the Edgeworth radii REw

inv and REw
inv,3 and

bottom panels show the effective intercept parameters l Ew
e and l Ew

e,3 . As described in the text, k3 and k4

are fixed to 0.1 and 0.5, respectively. The systematic uncertainties are dominated by fit-range variations
and are shown by bounding lines and shaded boxes for two- and three-particle parameters, respectively.
The dashed and dash-dotted lines represent the chaotic limits for l Ew

e and l Ew
e,3 , respectively.

parameters for each collision system, since the fit-range variations have the same effect in each
multiplicity interval. The systematic uncertainties for the two-pion fit parameters are largely
correlated and are asymmetric due to the different fit-range variations. We note that the radii
in pp collisions at

p
s = 7 TeV from our previous two-pion measurement [26] are about 25%

smaller than the central values extracted in this analysis. The large difference is attributed to the
narrower fit range in this analysis. In [24, 26] the chosen Gaussian fit range was q < 1.4 GeV/c,
while here it is q < 0.35 GeV/c for the lowest multiplicity interval. The narrower fit range is
chosen based on observations made with three-pion cumulants for which two-pion background
correlations are removed. It is observed in Fig. 2 that even for low multiplicities, the dominant
QS correlation is well below Q3 = 0.5 GeV/c. The presence of the non-femtoscopic back-
grounds can also bias the radii from two-pion correlations in wide fit ranges and is suppressed
with three-pion cumulant correlations.

To further address the non-Gaussian features of the correlation functions, we also extract the
fit parameters from an Edgeworth parametrization with k3 = 0.1 and k4 = 0.5 as shown in
Figs. 4(a) and 4(b). We observe that the Edgeworth radii in Pb–Pb are significantly larger than
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smaller than the central values extracted in this analysis. The large difference is attributed to the
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chosen based on observations made with three-pion cumulants for which two-pion background
correlations are removed. It is observed in Fig. 2 that even for low multiplicities, the dominant
QS correlation is well below Q3 = 0.5 GeV/c. The presence of the non-femtoscopic back-
grounds can also bias the radii from two-pion correlations in wide fit ranges and is suppressed
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• Find:

RAA
RpA

=
3.5

2.6
= 1.35

Conformal scaling seems to be consistent with HBT analysis



Recap:

blue circles: Hv282<LPbPb, rscl
red triangles: Hv282<LpPb
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• Motivated entirely by geometry

– Either a complete accident or

The correlations in p+A are driven by a (conformal) response to geometry



Conclusions:

1. The correlations reflect a conformal response to the geometry

- He3 can be a good test

2. In a conformal response, the response coeff are equal in p+A and A+A

- `mfp/L same in p+A and A+A at fixed dN/dy

- Evidence for a conformal scaling from the pT dependence

- The conformal scaling is consistent with HBT increase of RAA/RpA ' 1.35

3. Not necessary to fine tune the initial conditions to get the same v2 to 5% accuracy√
(〈r4〉 / 〈r2〉2)pA

(〈r4〉 / 〈r2〉2)AA︸ ︷︷ ︸
root of a double ratio

4. The conformal dynamics is not obviously hydrodynamics (conf. kinetics is fine)

- Running hydro in these peripheral bins is hard (AdS?)

All (conformal) non-equilibrium dynamics will tend to conformal hydrodynamics




