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Memory effects and critical
fluctuations



Fluctuations and memory effects:
Brownian motion as an example

® Consider the random walk of a Brownian particle. For sufficiently long
time T > Teff ( Teff effective relaxation time ), the fluctuations in
position will approach the equilibrium values which are independent of
the history of Brownian particle.

(z(r) —2(0)) =0,  ((z(r) — 2(0))") = D,

® Memory effects: if T is comparable to ""‘,;.»,;_:;- e =
relaxation timeTesf, the fluctuations can be — [*&,%"F "*’..-3.:.:
substantially different from the equilibrium :3%':"3,"}5;'-'.::,'.:‘3.*"-";::.f-.: ot =
expectation and would depend on the history of ‘-=~ 2 :-,ie ‘ 0
Brownian particle. S ..':',»'.-.:a"'.u_-_ e



Memory effects of critical fluctuations

@ The relaxation time of critical mode also grows with correlation
length:

Teff ~ &7,

with z defines the dynamical scaling exponent and z ~ 3 for
QCD critical point.

@ T.ff can be comparable or even larger than the time fireball
spent in critical regime.

@ Knowledge of equilibrium fluctuations might not be sufficient.

Memory effects are important for understanding critical fluctu-
ation In experiment.
NB: as the sign of non-Gaussian cumulants can be either pos-
itive or negative, even a qualitative understanding of their be-
haviors in experiments requires taking memory effects into ac-
count!
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This talk

® Understand how memory effects would affect the evolution of non-
Gaussian cumulants.

® Understand the implication of such memory effects for detecting
QCD critical point.



The evolution equations for
cumulants



Moments (cumulants) of critical field

o We consider spatial average of critical field: o = | [ d®*xo(x)| /V (crtical
field for QCD critical point is a combination of Baryon density and chiral
condensate).

@ The information of fluctuations are encoded in probability distribution P(o; 7):

M(T)= (o),  ra(r) = ((6a(7))?),  r3(r) = ((do(1))%),
ka(T) = <(50(7‘)) ) — 3/1%(7‘) dbo =0 — M(1).

@ One could determine equilibrium distribution Py(c) ~ exp (—V480(0)), V4 =
V/T out of equilibrium M4 k59 k39, k,°:

1 A A
Qo(0) = 5m5 (0~ 00)* + 5 (0 = 00)* + 7 (0~ 00)" .

where og, my, A3, A4 are determined by(m, = 1/£°9):
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The evolution of non-equilibrium cumulants

@ Similarly to the case of Brownian motion, Fokker-Planck equa-
tion describes the relaxation of non-equilibrium distribution P(o, 7)
towards the equilibrium distribution (Hohenberg-Halperin, 1977),

1

mg Teff

0.P(o;7) = {05 |05Q0(0) + V4_1(90] P(o; 1)}, Teff ~ £°.

@ Instead of directly solving Fokker-Planck equation, we derive a

set of evolution equation for first four cumulants M, ks, k3, k4
(S. Mukherjee, R. Venugopalan and YY, 1506.00645). Similarly
techniques have been used in studying turbulence.

@ The results are valid in the regime that £ is larger than micro-
scopic scale but smaller than the size of the system. In this

case,
63
:\/— 1.
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@ For small ¢, the evolution of x, is decoupled from higher cu-
mulants Kp11, .. ..
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A set of equation for cumulants evolution:

@ Structure of the evolution equation:

e L.H.S. evolves the first time derivative of cumulants.
e R.H.S evolves polynomials of those cumulants.

0-M(1) = —14Li[M(7)] [1+O()] ,
Orkin(T) = —n7g Ly [M(7), k2, ] [L+ O(e?)]
n=2234.

@ L,,n=1,2,3,4 are polynomials of their arguments and their
functional form only depend on the equilibrium properties of

the system.
@ We will present two limits.
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The Gaussian limit

2 ©q _

o If the equilibrium distribution is Gaussian: Qq(c) = zm2 (0 — o 0)?, Ko
eq :
t, = 0), the evolution among cumulants decouple:

OrM = —7_ [M(T) oo(7)] , Orko(7T) = —27'e_ffl [KQ(T) — kg(T)} :
0-k3(7) = —37'e_ﬁ1/<;3(7) , Orkg(T) = —4’7’e_ﬂ:1/<34(’7').

@ Simple relaxation equation, any non-Gaussian cumulants will be damped
and the damping rate is faster for higher cumulants.
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Near equilibrium limit

@ If the deviation from equilibrium of cumulants is small 0k, =

(S
/{nq1

K'/n_

0 M(1)

87-/433(7')

Or [Ka(T)]

~1
—Tegs OM,

~3 7 (eb’)

—4 7‘e_ffl (62 b4) 4

evolution equation is linearized:

((97/12(7') = —2 Te_ffl5l%2 ,

5/63 ~ 5/432 |
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r 5/14 ~ 5/433
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@ The evolution of higher cumulants are coupled to lower ones.
Lower moments will be relaxed back to the equilibrium first.
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Summary of Part |:

® We have derived a set of equations for the evolution of cumulants.

® We now apply it to the QCD critical regime. (We will restrict
ourselves to the cross-over side of critical regime as effects such
as bubble nucleation are not incorporated in the present
approach.)



Evolution of cumulants in QCD
critical regime.



Universal inputs

@ We will apply our equations to study the evolution of cumulants
in QCD critical regime. Both universal and non-universal (but
phenomenologically motivated) inputs are needed.

@ The QCD critical point is in the same universality class as that
of 3-d Ising Model. The equilibrium distribution P9(c; r, h)
is known in terms of Ising variables r (Ising temperature), h
(magnetic fields) and is universal.

@ Parametrization of Tef on Eeq IS universal:

Teff = Trel <i>z -
gmin

and we use results from Model H, i.e. , z = 3. 7, , the
relaxation time at & = &nin are model-dependent.
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Mapping to QCD phase diagram

@ We need to map lIsing variables(r, h) to QCD variables T, ug (Non-universal,
major uncertainty). We use linear mapping with AT, Au the width of critical
regime in QCD phase diagram.

T—T. h
AT — Ah’

v

@ We define the scaling regime with the criterion: &pmin < £eq < &max and to be
specific, we will take &max/Emin = 3 below.

1st order

. "=\ _ " critical point
et LTl e e

freeze-out point
with max &

freeze-out points

VS /s
¢

contours of
equal &

KB

Cumulants Evolution




@ We will assume for each trajectory, the upg of the fireball is constant. It would
then be corresponding to a vertical line in the critical regime due to our mapping
relation.

@ Along each trajectory, we parametrize the evolution of volume and temperature
by expansion rate ny = 3 and speed of sound c52:

V\(/IT) _ <1> | Tg) _(Tyme

Tl Tl

where V|, T, are volume and temperature of the system at 7, the time when
the trajectory hits the boundary of critical regime.

@ Initial condition: we will

assume M. ko, k3, k4 equal

to their equilibrium value at
T = 77 (Tefr is small).

(T-T.)/AT
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The evolutions

® Only one free parameter: Trel/7r1

® We have solved evolution equations along trajectories passing
through the critical regime.

® We will present the non-equilibrium values as a function of the
corresponding temperature on the trajectory.

® We rescale our results by the corresponding equilibrium value at
point A.




Evolution of magnetization and effective
correlation length
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® M tend to approach its equilibrium value but still fall behind.

® The effects of critical slowing down would delay the growth of non-
equilibrium length.

® Memory effect also protects the memory of the system in critical
regime from being completely washed out (Similar to previous results
by Berdnikov-Rajagopal).

® As expected, the slowing down is most visible around Tc where the
equilibrium correlation becomes large.



Skewness and Kurtosis
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® The evolution of higher cumulants might not follow the equilibrium
moments (lower cumulants will affect the evolution of the higher
one).

® The non-equilibrium value can be substantially different (including
sign) from the equilibrium one.



Oscillation of non-Gaussian cumulants
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® To further illustrate dependence on Trel/TI , we take non-Gaussian
cumulants at fixed T and plot them as a function of 7. /77 .

® The non-equilibrium values would approach the equilibrium ones
only for small Trel/TI

® Skewness and in particular kurtosis would oscillate Trel/’r[ when

changes.
® In experiment, 71 can be different for different centrality bins. Centrality

dependence of cumulants at fixed energy would potentially probe
memory effects.



Part lll: Implications on BES and the
search for QCD critical point



Mimicking Beam Energy Scan

® To mimic the beam energy scan, we also solved the evolution
equations for all constant H trajectories.VWe therefore obtain non-
equilibrium at each point in the critical regime.

® We will concentrate on the Skewness and Kurtosis and will start
with their most prominent feature: sign.

K4>O - =§min:

~~~~~ traj. A :

<O Tt i fzfmax:
------------------ ; F:E
A e o, ]

B I i L - .
B F.C.II..--~ F -

I R vy i ._-/:

: ] _—PointA |
—2 DB ot et e s ST I TR T ot i o i b e ' e RS AL

1 =08 06 -04  -02 00

(u—pc)/Ap



(Sign of) Equilibrium Skewness and Kurtosis
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® Following the argument by Stephanov(Phys.Rev.Lett. 102 (2009)
032301), we fix the sign of skewness is positive below cross-over
line.

® How would non-equilibrium effects change the above picture?



Deformation effects: Skewness
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Non-equilibrium skewness in critical regime
® Non-equilibrium effects deforms the regime that skewness is
positive(negative).

® Non-equilibrium skewness carries the memory from deconfined
phase(negative sign).



Deformation effects: Kurtosis
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Non-equilibrium kurtosis in critical regime

® Similar for kurtosis. The boundary that kurtosis will change sign also
deform.

® Flipping of sign of kurtosis is still generic!



Skewness and Kurtosis on freeze-out
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® Results depends on the relative location of freeze-curves and critical
points.VWe have taken three generic freeze-out curves.



Skewness on freeze-out curves

® The behavior of non-equilibrium
skewness can be non-monotonous even

if the equilibrium skewness is
monotonous.

® The sign of non-equilibrium skewness
can be opposite to the equilibrium ' /
skewness. . |

¢ Tre/Tc=0.005
* Tr/Tc=0.02
Trel/Tc=0.05

v Trel/Tc=0.1

10 08 _ -06  -04 -0z 00 ¢ Trel/Tc=0.2 08 06
(u—pc)/Ap (u—pc)/Ap

~-04 -02



Non-equilibrium Kurtosis(of critical field) on

freeze-out curves

® The flipping of sign of kurtosis is still
likely to happen!
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Beam energy dependence

0.0
® We could to one step further

and convert mu dependence
into \/s dependence.
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® Different combination of the
relative locations of freeze-out
curves and relaxation time would >
give similar trend. & 2|
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® Locating QCD critical point requires extensive modeling.



Summary



Summary

® We have developed a set of equations to describe the evolution of
cumulants in QCD critical regime.

® We have illustrated importance of memory effects and illustrate how

would non-equilibrium cumulants behave in QCD critical regime.
® Keeping non-equilibrium effects in mind are important for understudying

critical contributions to the data.

® For fixed trajectory and fixed T, non-Gaussian cumulants could
oscillate with varyin :
Y& Trel/Tr

® Deformation of the boundary that sign of higher cumulants will

change.
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