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Memory effects and critical 
fluctuations



Fluctuations and memory effects: 
Brownian motion as an example

• Consider the random walk of a Brownian particle. For sufficiently long 
time                   (        effective relaxation time ), the fluctuations in 
position will approach the equilibrium values which are independent of 
the history of Brownian particle. 

• Memory effects: if    is comparable to 
relaxation time  , the fluctuations can be 
substantially different from the equilibrium 
expectation and would depend on the history of 
Brownian particle. 



Memory e↵ects of critical fluctuations

The relaxation time of critical mode also grows with correlation
length:

⌧
e↵

⇠ ⇠z ,

with z defines the dynamical scaling exponent and z ⇠ 3 for
QCD critical point.

⌧
e↵

can be comparable or even larger than the time fireball
spent in critical regime.

Knowledge of equilibrium fluctuations might not be su�cient.
Memory e↵ects are important for understanding critical fluctu-
ation in experiment.
NB: as the sign of non-Gaussian cumulants can be either pos-
itive or negative, even a qualitative understanding of their be-
haviors in experiments requires taking memory e↵ects into ac-
count!
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This talk

• Understand how memory effects would affect the evolution of non-
Gaussian cumulants. 	


• Understand the implication of such memory effects for detecting 
QCD critical point. 



The evolution equations for 
cumulants



Moments (cumulants) of critical field

We consider spatial average of critical field: � ⌘ ⇥R
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field for QCD critical point is a combination of Baryon density and chiral
condensate).
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The evolution of non-equilibrium cumulants

Similarly to the case of Brownian motion, Fokker-Planck equa-
tion describes the relaxation of non-equilibrium distribution P(�, ⌧)
towards the equilibrium distribution (Hohenberg-Halperin, 1977),
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Instead of directly solving Fokker-Planck equation, we derive a
set of evolution equation for first four cumulants M,

2

,
3

,
4

(S. Mukherjee, R. Venugopalan and YY, 1506.00645). Similarly
techniques have been used in studying turbulence.

The results are valid in the regime that ⇠ is larger than micro-
scopic scale but smaller than the size of the system. In this
case,

✏ =

r
⇠3

V

⌧ 1 .

For small ✏, the evolution of n is decoupled from higher cu-
mulants n+1

, . . ..
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A set of equation for cumulants evolution:

Structure of the evolution equation:
L.H.S. evolves the first time derivative of cumulants.
R.H.S evolves polynomials of those cumulants.
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Ln, n = 1, 2, 3, 4 are polynomials of their arguments and their
functional form only depend on the equilibrium properties of
the system.
We will present two limits.
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The Gaussian limit

If the equilibrium distribution is Gaussian: ⌦
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Simple relaxation equation, any non-Gaussian cumulants will be damped
and the damping rate is faster for higher cumulants.
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Near equilibrium limit

If the deviation from equilibrium of cumulants is small �n ⌘
n � eqn , evolution equation is linearized:
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The evolution of higher cumulants are coupled to lower ones.
Lower moments will be relaxed back to the equilibrium first.
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Summary of Part I:

• We have derived a set of equations for the evolution of cumulants.

• We now apply it to the QCD critical regime. (We will restrict 
ourselves to the cross-over side of critical regime as effects such 
as bubble nucleation are not incorporated in the present 
approach.)



Evolution of cumulants in QCD 
critical regime. 



Universal inputs

We will apply our equations to study the evolution of cumulants
in QCD critical regime. Both universal and non-universal (but
phenomenologically motivated) inputs are needed.

The QCD critical point is in the same universality class as that
of 3-d Ising Model. The equilibrium distribution P

eq(�; r , h)
is known in terms of Ising variables r (Ising temperature), h
(magnetic fields) and is universal.

Parametrization of ⌧
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is universal:
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and we use results from Model H, i.e. , z = 3. ⌧
rel

, the
relaxation time at ⇠ = ⇠

min

are model-dependent.
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Mapping to QCD phase diagram

We need to map Ising variables(r , h) to QCD variables T , µB (Non-universal,
major uncertainty). We use linear mapping with �T ,�µ the width of critical
regime in QCD phase diagram.

T � Tc
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µ� µc
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= � r
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.

We define the scaling regime with the criterion: ⇠min < ⇠eq < ⇠
max

and to be
specific, we will take ⇠

max

/⇠
min

= 3 below.
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Trajectory

We will assume for each trajectory, the µB of the fireball is constant. It would
then be corresponding to a vertical line in the critical regime due to our mapping
relation.
Along each trajectory, we parametrize the evolution of volume and temperature
by expansion rate nV = 3 and speed of sound c

2

s :
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where VI ,TI are volume and temperature of the system at ⌧I , the time when
the trajectory hits the boundary of critical regime.

Initial condition: we will
assume M,

2

,
3

,
4

equal
to their equilibrium value at

⌧ = ⌧I (⌧e↵ is small).
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The evolutions

• We will present the non-equilibrium values as a function of the 
corresponding temperature on the trajectory. 

• We have solved evolution equations along trajectories passing 
through the critical regime. 

• We rescale our results by the corresponding equilibrium value at 
point A. 

• Only one free parameter:



Evolution of magnetization and effective 
correlation length

• The effects of critical slowing down would delay the growth of non-
equilibrium length. 

• M tend to approach its equilibrium value but still fall behind. 	


• As expected, the slowing down is most visible around Tc where the 
equilibrium correlation becomes large. 

• Memory effect also protects the memory of the system in critical 
regime from being completely washed out (Similar to previous results 
by Berdnikov-Rajagopal). 



Skewness and Kurtosis

• The evolution of higher cumulants might not follow the equilibrium 
moments (lower cumulants will affect the evolution of the higher 
one).

• The non-equilibrium value can be substantially different (including 
sign) from the equilibrium one. 



Oscillation of non-Gaussian cumulants    

• To further illustrate dependence on             , we take non-Gaussian 
cumulants at fixed T and plot them as a function of              . 

• The non-equilibrium values would approach the equilibrium ones 
only for small                . 

• Skewness and in particular kurtosis would oscillate    when            
changes.  

• In experiment,     can be different for different centrality bins. Centrality 
dependence of cumulants at fixed energy would potentially probe 
memory effects. 



Part III: Implications on BES and the 
search for QCD critical point



Mimicking Beam Energy Scan

• To mimic the beam energy scan, we also solved the evolution 
equations for all constant      trajectories. We therefore obtain non-
equilibrium at each point in the critical regime. 

• We will concentrate on the Skewness and Kurtosis and will start 
with their most prominent feature: sign. 



(Sign of) Equilibrium Skewness and Kurtosis

• Following the argument by Stephanov(Phys.Rev.Lett. 102 (2009) 
032301), we fix the sign of skewness is positive below cross-over 
line. 

Skewness Kurtosis

Red >0

Blue<0

• How would non-equilibrium effects change the above picture?



Deformation effects: Skewness

• Non-equilibrium effects deforms the regime that skewness is 
positive(negative).

• Non-equilibrium skewness carries the memory from deconfined 
phase(negative sign).

⌧rel/⌧I = 0.02

Non-equilibrium skewness in critical regime



Deformation effects: Kurtosis

• Similar for kurtosis. The boundary that kurtosis will change sign also 
deform.

Non-equilibrium kurtosis in critical regime

• Flipping of sign of kurtosis is still generic!



Skewness and Kurtosis on freeze-out 
curves

• Results depends on the relative location of freeze-curves and critical 
points. We have taken three generic freeze-out curves.

• We plot non-equilibrium skewness and 
kurtosis on the freeze-out curves as 
functions of (freeze-out)  



Skewness on freeze-out curves

• The sign of non-equilibrium skewness 
can be opposite to the equilibrium 
skewness.

• The behavior of non-equilibrium 
skewness can be non-monotonous even 
i f the equ i l ibr ium skewness i s 
monotonous.



Non-equilibrium Kurtosis(of critical field) on 
freeze-out curves

• The flipping of sign of kurtosis is still 
likely to happen!



• Different combination of the 
relative locations of freeze-out 
curves and relaxation time would 
give similar trend. 

Beam energy dependence

• We could to one step further 
and convert mu dependence 
into          dependence.

• Locating QCD critical point requires extensive modeling.



Summary



Summary 
• We have developed a set of equations to describe the evolution of 

cumulants in QCD critical regime.

• We have illustrated importance of memory effects and illustrate how 
would non-equilibrium cumulants behave in QCD critical regime.

• Keeping non-equilibrium effects in mind are important for understudying 
critical contributions to the data. 	


• For fixed trajectory and fixed T, non-Gaussian cumulants could 
oscillate with varying             .     	


• Deformation of the boundary that sign of higher cumulants will 
change.


