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High energy scattering 
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BFKL: Un-integrated gluon distribution 



Non-linear term at high 
density 
 Balitsky-Fadin-Lipatov-Kuraev, 1977-78 

 

 

 Balitsky-Kovchegov: Non-linear term, 98  
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Hard processes at small-x 

 Manifest dependence on un-integrated 

gluon distributions 

Dominguiz-Marquet-Xiao-Yuan, 2010 
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Additional dynamics comes in 

 BFKL vs Sudakov resummations (LL) 
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Soft gluon 



Sudakov resummation at small-x 
 Take massive scalar particle production 

p+A->H+X as an example to demonstrate 
the double logarithms, and resummation 
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p H,MH 

WW-gluon distribution 

A 



Explicit one-loop calculations 
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 Collinear divergence  DGLAP evolution 

 Small-x divergence  BK-type evolution 
Dominguiz-Mueller-Munier-Xiao, 2011 



Soft vs Collinear gluons 

 Radiated gluon momentum 

 

 Soft gluon, α~β<<1 

 Collinear gluon, α~1, β<<1 

 Small-x collinear gluon, 1-β<<1, α0 

Rapidity divergence 
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Examples  

 Contributes to 

Collinear gluon from the proton 

Collinear gluon from nucleus 

Soft gluon to Sudakov double logs 

6/7/2016 9 

FIG. 1. Examplesof one-loop diagramsfrom thereal gluon radiat ion (L) and virtual gluon radiat ion

(R) for the scalar part icle product ion in pA collisions in the saturat ion formalism with the mult iple

interact ions with thenucleus target taken into account . Here thevert ical gluon represents arbit rary

number of the WW small-x gluons which are summed into Wilson lines.

where k⊥ and k2⊥ represent the transverse momenta for the final state scalar part icle and
the radiated gluon, respect ively, kg⊥ = kg1⊥ + kg2⊥ = k⊥ + k2⊥ , 2

f = (1 − z)Q2 with z the
momentum fract ion of the incoming gluon carried by the scalar part icle. For convenience,
we further define k1⊥ = k⊥ − kg1⊥ , k⊥ = k⊥ − zkg⊥ , and ν and α are the polarizat ion
vector indices for the incoming and outgoing gluons, for which we have chosen the physical
polarizat ions. ΓA and ΓB are defined as

Γ
β
A (kg1⊥ , kg2⊥ ) = d2x1d2x2ei kg1⊥ ·x1+ i kg2⊥ ·x2 Tr U†(x2)TbU(x2)[i ∂

β
⊥U†(x1)U(x1), Ta] ,(4)

ΓB (kg⊥ ) = 2 d2x⊥ei kg⊥ ·x⊥ Tr TbU(x⊥ )TaU†(x⊥ ) , (5)

where a and b are color indices for the incoming and outgoing gluons, respect ively. Clearly,
the amplitude squared from the above expressions will depend on mult i-gluon correlat ion
funct ions (beyond the WW-gluon dist ribut ion) from the nucleus, as this is the common
feature in the high order calculat ions in the small-x formalism [15]. However, in the k⊥ Q
limit , thesecorrelat ion funct ions iseither reduced to theWW-gluon dist ribut ion, or absorbed
into the evolut ion of the WW-gluon distribut ion. To evaluate the contribut ion from the real
gluon radiat ion, we integrate out the phase space of the radiated gluon (k2). To simplify the
calculat ion, we perform the power expansion of the amplitude squared in terms of k⊥ / Q,
and only keep the leading power contribut ions. This allows us to find that the amplitude
contains three important contribut ions: (1) soft gluon radiat ion k+

2 ∼ k−
2 ∼ k2⊥ which

eventually leads to the Sudakov logarithms; (2) collinear gluon contribut ion with respect to
the incoming nucleon project ile; (3) collinear gluon contribut ion with respect to the target
nucleus. The soft gluon contribut ion can be easily obtained in the limit of Q2 k2

⊥ , which
results into δ(k+

2 )δ(k−
2 ) ln(Q2/ k2

2⊥ ). When Fourier t ransformed into the impact parameter
space, this term leads to a soft divergence in terms of 1/ 2 in dimensional regularizat ion.
The soft divergence will be cancelled by the relevant virtual diagrams. The last contribut ion
contains therapidity divergenceand givesriseto theevolut ion of theWW gluon distribut ion.

The evaluat ion of the virtual diagrams leads to the following contribut ions,

− αs

dz

z(1− z)

d2q⊥d2kg1⊥

(2π)4
ΓC (kg1⊥ , kg2⊥ )

kν
g1⊥

q2
⊥

−
2q ν
⊥ q⊥ · q⊥ − qν⊥q2

⊥

q2
⊥ (q2

⊥ + 2
f )

+
αsNc

π
β0

1

UV

−
1

I R

ΓD (k⊥ ) , (6)
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 Only contributes to small-x collinear gluon 
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Final result 

 Double logs at one-loop order 

 

 

 

 Include both BFKL (BK) and Sudakov 
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Photon-Jet correlation 

 Leading order  
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(a) (b)

FIG. 7. Two LO amplitudes.

Adding them together, we have

CA +
CA + CA

2
|M 0|2 + −

Nc

2
A2

1 −
Nc

4
A2

2 + A2
3 + 2A1A∗

2 − 2A1A∗
3

+ −
Nc

2
A2

2 −
Nc

4
A2

1 + A2
3 + 2A1A∗

2 + 2A2A∗
3

+ −
Nc

2
A2

3 −
Nc

4
A2

1 + A2
2 + 2A2A∗

3 − 2A1A∗
3

= (CA + CA ) |M 0|2 − Nc A2
1 + A2

2 + A2
3 + A1A∗

2 − A1A∗
3 + A2A∗

3

= CA |M 0|2 . (41)

Again, this leads to a leading double logarithmic contribut ion as,

−
αs

2π
CA ln2 Q2b2

⊥

c2
0

, (42)

the same as that for Higgs boson product ion.

I I I . D OU B LE LOGA R I T H M S I N JET -PH OT ON PROD U CT I ON I N PA COLL I -

SI ON S

In this sect ion, we will present a detailed analysis on the Sudakov double logarithms in
small-x calculat ions, by extending our previous calculat ion of Higgs boson product ion to the
photon-jet product ion in pA collisions. We will demonstrate that at one-gluon radiat ion,
the soft gluon contributes to the Sudakov double logarithms, whereas the collinear gluon
contributes to the small-x evolut ion (in this case, it is the BK evolut ion). These two con-
tribut ions are well separated in the phase space of the radiated gluon, and also by different
diagrams. Once we have shown this example, we will carry out the calculat ions of leading
double logs for other hard processes.

A . Gener ic A r gument s

First of all, let us study the q+ g → q+ γ case. The leading order cross sect ion for real-
photon and associate jet product ions in pA collisions, as shown in Fig. 17, can be writ ten

11

Dipole gluon distribution 



One gluon radiation (real) 
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BK-evolution 

6/7/2016 14 

(a) (b)

(d)(c)

FIG. 8. Four one loop real emission graphs which cont ribute to the leading power amplitude for

the Sudakov factor, while two other graphs which have the radiated gluon at taching to the red

dots are neglected.

as

dσ

dP.S.
=

f

αe.m.e
2
f xpqf (xp)2 1 + (1− z)2 (1− z)

d2u⊥d2v⊥d2u⊥d2v⊥
(2π)6

e− iq⊥ ·(v⊥ − v⊥ )− iP⊥ ·(u⊥ − u⊥ )

×
u⊥ · u⊥
u2
⊥u 2

⊥

S(2) (b⊥ , b⊥ ) + S(2) (v⊥ , v⊥ ) − S(2) (v⊥ , b⊥ ) − S(2) (b⊥ , v⊥ ) , (43)

where v⊥ = zx⊥ + (1− z)b⊥ and u⊥ = x⊥ − b⊥ with x⊥ and b⊥ being the coordinates of the
produced real photon and quark, respect ively.

It st raightforward to see that those four dipole scat tering amplitudes correspond to the
four different graphs after squaring the LO amplitudes as shown in Fig. 17. The red dots in
Fig. 17 indicate thehighly virtual quark propagators in thedijet correlat ion limit (P⊥ q⊥ ).
Simple power count ing analysis shows that the LO cross sect ion is proport ional to q4

⊥ / P4
⊥

as a result of the product of two quark propagators (as indicated by the red dots) which is
proport ional to 1/ P2

⊥ . This result is explicit ly shown in Ref. [1]. Therefore, in the leading
power approximat ion at one loop order, one can treat this highly virtual quark propagator
as an effect ive vertex, namely, any addit ional gluon attachment to the vertex, which brings
another power of 1/ P2

⊥ , is power suppressed therefore can be neglected.1

For the sake of simplicity, with the cancelat ion of the 1
2 term in mind, we can obtain

the Sudakov factor from the real graphs only by choosing µ2 = P2
⊥ without dealing with the

virtual graphs.

1 This power count ing analysis only works when the radiated gluon is not collinear to the incoming target .

Namely, if the longitudinal momentum of the radiated gluon vanishes, which indicates that the gluon is

collinear to the nucleus target and generates the rapidity divergence, the radiated gluon can at tach to the

red vertex without being power suppressed. In this region, as we have expected, the rapidity divergence

can be absorbed into the corresponding BK equat ion. Therefore, in fact , the four graphs which contribute

to the Sudakov double logarithm which is shown in Fig. 18 (graph (a) and (d) do not cont ribute to the

BK evolut ion), are not the same as the graphs which cont ribute to the BK evolut ion (only graph (b) and

(c) together with two other graphs which are not shown contribute to the BK evolut ion) of the relevant

dipole amplitudes. We have also explicit ly worked out the derivat ion of the BK equat ion at one-loop level.
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FIG. 8. Four one loop real emission graphs which cont ribute to the leading power amplitude for

the Sudakov factor, while two other graphs which have the radiated gluon at taching to the red

dots are neglected.

as

dσ

dP.S.
=

f

αe.m.e
2
f xpqf (xp)2 1 + (1− z)2 (1− z)

d2u⊥d2v⊥d2u⊥d2v⊥
(2π)6

e− iq⊥ ·(v⊥ − v⊥ )− iP⊥ ·(u⊥ − u⊥ )

×
u⊥ · u⊥
u2
⊥u 2

⊥

S(2) (b⊥ , b⊥ ) + S(2) (v⊥ , v⊥ ) − S(2) (v⊥ , b⊥ ) − S(2) (b⊥ , v⊥ ) , (43)

where v⊥ = zx⊥ + (1− z)b⊥ and u⊥ = x⊥ − b⊥ with x⊥ and b⊥ being the coordinates of the
produced real photon and quark, respect ively.

It st raight forward to see that those four dipole scat tering amplitudes correspond to the
four different graphs after squaring the LO amplitudes as shown in Fig. 17. The red dots in
Fig. 17 indicate thehighly virtual quark propagators in thedijet correlat ion limit (P⊥ q⊥ ).
Simple power count ing analysis shows that the LO cross sect ion is proport ional to q4

⊥ / P4
⊥

as a result of the product of two quark propagators (as indicated by the red dots) which is
proport ional to 1/ P2

⊥ . This result is explicit ly shown in Ref. [1]. Therefore, in the leading
power approximation at one loop order, one can treat this highly virtual quark propagator
as an effect ive vertex, namely, any addit ional gluon at tachment to the vertex, which brings
another power of 1/ P2

⊥ , is power suppressed therefore can be neglected.1

For the sake of simplicity, with the cancelat ion of the 1
2 term in mind, we can obtain

the Sudakov factor from the real graphs only by choosing µ2 = P2
⊥ without dealing with the

virtual graphs.

1 This power count ing analysis only works when the radiated gluon is not collinear to the incoming target .

Namely, if the longitudinal momentum of the radiated gluon vanishes, which indicates that the gluon is

collinear to the nucleus target and generates the rapidity divergence, the radiated gluon can at tach to the

red vertex without being power suppressed. In this region, as we have expected, the rapidity divergence

can be absorbed into the corresponding BK equat ion. Therefore, in fact , the four graphs which cont ribute

to the Sudakov double logarithm which is shown in Fig. 18 (graph (a) and (d) do not cont ribute to the

BK evolut ion), are not the same as the graphs which contribute to the BK evolut ion (only graph (b) and

(c) together with two other graphs which are not shown cont ribute to the BK evolut ion) of the relevant

dipole amplitudes. We have also explicit ly worked out the derivat ion of the BK equat ion at one-loop level.
12

(a) (b)

FIG. 9. Real gluon radiat ion cont ribut ion to the BK-evolut ion, but not to the leading double

logarithms.

where ξi = kg ·p2/ ki ·p2. All the integral of the phase space result ing into the leading double
logs demonstrated in the previous sect ion holds in the above funct ional forms as well.

In the analysis, we focus on two different regions of the radiated gluon: (1) soft gluon,
where αg ∼ βg 1; (2) collinear to the momentum of the nucleus, where αg 1 but
βg ∼ 1. The region (1) contribute to the Sudakov double logarithms, whereas the region (2)
contributes to the small-x evolut ion for the unintegrated gluon dist ribut ion associated with
the nucleus. In both case, ξi → 0 limit will be taken in the analysis of their contribut ions.
For the small-x evolut ion, we require addit ional kg ·p1 ∼ p2 ·p1 (k1 + k2) ·p1 ∼ Q2. These
two regions will be main focus to be analyzed in the gluon radiat ion to the qg → qγ hard
process.

Again, the leading order diagram has been shown in Fig. 3, and can be summarized into
the following form,

A0 ∼
k
β
2⊥

k2
2⊥

−
k
β
2⊥ − (1− z)q

β
⊥

(k2⊥ − (1− z)q⊥ )2
d2x⊥ei q⊥ ·x⊥ U(x⊥ ) , (48)

where k1⊥ , k2⊥ represent the momenta for the final state quark and photon, q⊥ = k1⊥ + k2⊥ .
In the correlat ion limit , we will find out that the non-zero contribut ion comes from the
derivat ive of the Wilson line U(x⊥ ), which leads to the cross sect ion is proport ional dipole
gluon distribut ion.

Let us first analyze the small-x evolut ion contribut ion, for which we focus on collinear
gluon radiat ion parallel to the nucleus momentum. Some of the diagrams are straightfor-
ward, whereas some are non-t rivial. The diagram (a) is, in part icular, interest ing, because
it only contributes to the small-x evolut ion, not to the soft gluon double logarithms. The
propagator goes as,

kγµ(k+ kg)

k2(k + kg)2
, (49)

where k = k1 + k2. Since k is far off-shell, k2 ∼ Q2, (k + kg)2 will be far off-shell as well if
kg is soft . However, it does have contribut ion in the collinear limit . We can work out the
explicit dependence in the above expression,

≈
2 · kg⊥

k2
g⊥ 1 + k·p1

kg ·p1

. (50)
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FIG. 9. Real gluon radiat ion contribut ion to the BK-evolut ion, but not to the leading double

logarithms.
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These two do not 

Contribute to soft 

Gluon radiation 



Soft gluon radiation 

 A2 from (a,b) contribute to CF/2 (jet) 

 A2 from (c,d) contribute to CF 

 Interference contribute to 1/2Nc 

6/7/2016 15 

(a) (b)

(d)(c)

FIG. 8. Four one loop real emission graphs which contribute to the leading power amplitude for

the Sudakov factor, while two other graphs which have the radiated gluon at taching to the red

dots are neglected.

as

dσ

dP.S.
=

f

αe.m.e
2
f xpqf (xp)2 1 + (1− z)2 (1− z)

d2u⊥d2v⊥d2u⊥d2v⊥
(2π)6
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where v⊥ = zx⊥ + (1− z)b⊥ and u⊥ = x⊥ − b⊥ with x⊥ and b⊥ being the coordinates of the

produced real photon and quark, respect ively.
It st raightforward to see that those four dipole scat tering amplitudes correspond to the

four different graphs after squaring the LO amplitudes as shown in Fig. 17. The red dots in

Fig. 17 indicate thehighly virtual quark propagators in thedijet correlat ion limit (P⊥ q⊥ ).
Simple power count ing analysis shows that the LO cross sect ion is proport ional to q4

⊥ / P4
⊥

as a result of the product of two quark propagators (as indicated by the red dots) which is
proport ional to 1/ P2

⊥ . This result is explicit ly shown in Ref. [1]. Therefore, in the leading
power approximat ion at one loop order, one can treat this highly virtual quark propagator

as an effect ive vertex, namely, any addit ional gluon at tachment to the vertex, which brings
another power of 1/ P2

⊥ , is power suppressed therefore can be neglected.1

For the sake of simplicity, with the cancelat ion of the 1
2 term in mind, we can obtain

the Sudakov factor from the real graphs only by choosing µ2 = P2
⊥ without dealing with the

virtual graphs.

1 This power count ing analysis only works when the radiated gluon is not collinear to the incoming target .

Namely, if the longitudinal momentum of the radiated gluon vanishes, which indicates that the gluon is

collinear to the nucleus target and generates the rapidity divergence, the radiated gluon can at tach to the

red vertex without being power suppressed. In this region, as we have expected, the rapidity divergence

can be absorbed into the corresponding BK equat ion. Therefore, in fact , the four graphs which cont ribute

to the Sudakov double logarithm which is shown in Fig. 18 (graph (a) and (d) do not contribute to the

BK evolut ion), are not the same as the graphs which cont ribute to the BK evolut ion (only graph (b) and

(c) together with two other graphs which are not shown cont ribute to the BK evolut ion) of the relevant

dipole amplitudes. We have also explicit ly worked out the derivat ion of the BK equat ion at one-loop level.
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ggqq 

 |A1|
2
CA, |A2|

2
CF/2, |A3|

2
CF/2 

 2A1*(A2+A3)-Nc/2 

 2A2*A3, 1/Nc suppressed 
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FIG. 10. Soft gluon radiat ion in gg → qq̄ process in the saturat ion formalism. The blobs in the

lower two diagrams represent the mult iple gluon interact ion with nucleus formulated in Ref. [1] in

the correlat ion limit .

where again we have taken the correlat ion limit . The amplitude squared will be,

|A0|2 = d2x⊥y⊥ei q⊥ ·(x⊥ − y⊥ )Γβ(k1⊥ ))Γβ (k1⊥ ))

×
1

2
(1− z)2 + z2 Tr U(x⊥ )U†(y⊥ ) Tr ∂⊥U(x⊥ )∂⊥U†(y⊥ )

− 2z(1− z)Tr U(x⊥ )∂⊥U†(y⊥ ) Tr U(x⊥ )∂⊥U†(y⊥ ) . (67)

This is consistent with what we have found in Ref. [1].

B . qg → qγ

The init ial state radiat ion contribut ion can be writ ten as

A1 =
2(kg⊥ − kg2⊥ )µ

(kg⊥ − kg2⊥ )2
Γβ(k1⊥ )

1

NF

Tr[TbU(x2)T cU†(x2)] (1− z)∂⊥U(x⊥ )[Ta, T c]U†(x⊥ )

− zU(x⊥ )[Ta, T c]∂⊥U†(x⊥ )
i j

, (68)

where a represents the color index for incoming gluon, b for radiated gluon, i j for the final
state quark pair. Gluon radiat ion from the quark and ant iquark lines can be writ ten as

A2 =
2(kg⊥ − ξ1k1⊥ )µ

(kg⊥ − ξ1k1⊥ )2
Γβ(k1⊥ ) (1− z)Tb∂⊥U(x⊥ )TaU†(x⊥ ) − zTbU(x⊥ )Ta∂⊥U†(x⊥ )

i j
,

A3 = −
2(kg⊥ − ξ2k2⊥ )µ

(kg⊥ − ξ2k2⊥ )2
Γβ(k1⊥ ) (1− z)∂⊥U(x⊥ )TaU†(x⊥ )Tb − zU(x⊥ )Ta∂⊥U†(x⊥ )Tb

i j
.

(69)
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qgqg 

 |A1|
2
CF, |A2|

2
CF/2, |A3|

2
CA/2 

 2A3*(A1+A2)-Nc/2 

 2A1*A2, large Nc suppressed 
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FIG. 11. Same as Fig. 10 for qg → qg process.

where again we have taken the correlat ion limit . The amplitude squared will be,

|A0|2 = d2x⊥d2y⊥ei q⊥ ·(x⊥ − y⊥ )Γβ(k1⊥ ))Γβ (k1⊥ ))

×
1

2
Tr U(x⊥ )U†(y⊥ ) Tr ∂⊥U(x⊥ )U†(x⊥ )∂⊥U(y⊥ )U†(y⊥ )

+ z2CF ∂⊥U(x⊥ )∂⊥U†(y⊥ ) . (76)

This is consistent with what we have found in Ref. [1].

The init ial state radiat ion contribut ion can be writ ten as

A1 =
2(kg⊥ − kg2⊥ )µ

(kg⊥ − kg2⊥ )2
Γβ(k1⊥ ) − ∂⊥U(x⊥ )U†(x⊥ )TaU(x⊥ )U†(x2⊥ )TbU(x2⊥ )

+ zTa∂⊥U(x⊥ )U†(x2⊥ )TbU(x2⊥ )
i j

, (77)

where a represents the color index for out going final state gluon, b for radiated gluon, i j

for the init ial and final state quarks. Gluon radiat ion from the quark and gluon lines can
be writ ten as

A2 =
2(kg⊥ − ξ1k1⊥ )µ

(kg⊥ − ξ1k1⊥ )2
Γβ(k1⊥ ) − ∂⊥U(x⊥ )U†(x⊥ )TaU(x⊥ ) + zTbTa∂⊥U(x⊥ )

i j
,

A3 = −
2(kg⊥ − ξ2k2⊥ )µ

(kg⊥ − ξ2k2⊥ )2
Γβ(k1⊥ ) − ∂⊥U(x⊥ )U†(x⊥ )[Ta, Tb]U(x⊥ ) + z[Ta, Tb]∂⊥U(x⊥ )

i j
.

(78)

The amplitude squared of the above terms can be easily calculated, following the example
in previous sect ion,

|A1|2 = CF |A0|2, |A2|2 =
CF

2
|A0|2, |A3|2 =

CA

2
|A0|2 . (79)
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gggg 

 |A1|
2
CA, |A2|

2
CA/2, |A3|

2
CA/2 

 2A1*(A2+A3)+2A2*A3-Nc 
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FIG. 12. Same as Fig. 10 for gg → gg process.

Where F
(1,2,3)
g represent the following Wilson lines,

F (1)
g = NcTr[∂⊥U(x⊥ )∂⊥U†(y⊥ )]Tr[U(x⊥ )U†(y⊥ )] ,

F (2)
g = NcTr[∂⊥U(x⊥ )U†(y⊥ )]Tr[U(x⊥ )∂⊥U†(y⊥ )] ,

F (3)
g = Tr[∂⊥U(x⊥ )U†(x⊥ )∂⊥U(y⊥ )U†(y⊥ )]Tr[U(x⊥ )U†(y⊥ )]Tr[U(x⊥ )U†(y⊥ )] . (87)

With these expressions, we will obtain the same different ial cross sect ions as that in Ref. [1].
The init ial and final state radiat ion contribut ions can be writ ten as

A1 =
2(kg⊥ − kg2⊥ )µ

(kg⊥ − kg2⊥ )2
Γβ(k1⊥ )

1

NF

Tr[TdU(x2)TeU†(x2)]

×
1

NF

Tr z[Td, Ta][U†(x⊥ )TbU(x⊥ ), ∂⊥U†(x⊥ )TcU(x⊥ ) + U†(x⊥ )Tc∂⊥U(x⊥ )]

− (1− z)[Td, Ta][∂⊥U†(x⊥ )TbU(x⊥ ) + U†(x⊥ )Tb∂⊥U(x⊥ ), U†(x⊥ )TcU(x⊥ )]
i j

,

A2 =
2(kg⊥ − ξ1k1⊥ )µ

(kg⊥ − ξ1k1⊥ )2
Γβ(k1⊥ )

×
1

NF

Tr zTa[U†(x⊥ )[Td, Tb]U(x⊥ ), ∂⊥U†(x⊥ )TcU(x⊥ ) + U†(x⊥ )Tc∂⊥U(x⊥ )]

− (1− z)Ta[∂⊥U†(x⊥ )TbU(x⊥ ) + U†(x⊥ )[Td, Tb]∂⊥U(x⊥ ), U†(x⊥ )TcU(x⊥ )]
i j

,

A3 =
2(kg⊥ − ξ2k2⊥ )µ

(kg⊥ − ξ2k2⊥ )2
Γβ(k1⊥ )

×
1

NF

Tr zTa[U†(x⊥ )TbU(x⊥ ), ∂⊥U†(x⊥ )[Td, T c]U(x⊥ ) + U†(x⊥ )Tc∂⊥U(x⊥ )]

− (1− z)Ta[∂⊥U†(x⊥ )TbU(x⊥ ) + U†(x⊥ )Tb∂⊥U(x⊥ ), U†(x⊥ )[Td, T c]U(x⊥ )]
i j

,(88)

where d is the color index for the radiated gluon.
The amplitude squared of the above three terms can be easily calculated,

|A1|2 = CA |A0|2, |A2|2 =
CA

2
|A0|2, |A3|2 =

CA

2
|A0|2 . (89)
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Sudakov leading double logs 

 Each incoming parton contributes to a half 

of the associated color factor  

 Initial gluon radiation, aka, TMDs 

6/7/2016 19 

Sudakov 



Phenomenological applications 
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Di-hadron azimuthal 

Correlations at the 

Electron-ion Collider 

Zheng, Aschenauer,Lee,Xiao, Phys.Rev. D89 (2014) 074037  



Beyond leading logs 

 Additional nuclear effects, such as energy 

loss will come in 

Liou-Mueller, 1402.1647 

6/7/2016 21 FIG. 10. Soft gluon radiat ion in gg → qq̄ process in the saturat ion formalism. The blobs in the

lower two diagrams represent the mult iple gluon interact ion with nucleus formulated in Ref. [1] in

the correlat ion limit .

where again we have taken the correlat ion limit . The amplitude squared will be,

|A0|2 = d2x⊥y⊥ei q⊥ ·(x⊥ − y⊥ )Γβ(k1⊥ ))Γβ (k1⊥ ))

×
1

2
(1− z)2 + z2 Tr U(x⊥ )U†(y⊥ ) Tr ∂⊥U(x⊥ )∂⊥U†(y⊥ )

− 2z(1− z)Tr U(x⊥ )∂⊥U†(y⊥ ) Tr U(x⊥ )∂⊥U†(y⊥ ) . (67)

This is consistent with what we have found in Ref. [1].

B . qg → qγ

The init ial state radiat ion contribut ion can be writ ten as

A1 =
2(kg⊥ − kg2⊥ )µ

(kg⊥ − kg2⊥ )2
Γβ(k1⊥ )

1

NF

Tr[TbU(x2)T cU†(x2)] (1− z)∂⊥U(x⊥ )[Ta, T c]U†(x⊥ )

− zU(x⊥ )[Ta, T c]∂⊥U†(x⊥ )
i j

, (68)

where a represents the color index for incoming gluon, b for radiated gluon, i j for the final
state quark pair. Gluon radiat ion from the quark and ant iquark lines can be writ ten as

A2 =
2(kg⊥ − ξ1k1⊥ )µ

(kg⊥ − ξ1k1⊥ )2
Γβ(k1⊥ ) (1− z)Tb∂⊥U(x⊥ )TaU†(x⊥ ) − zTbU(x⊥ )Ta∂⊥U†(x⊥ )

i j
,

A3 = −
2(kg⊥ − ξ2k2⊥ )µ

(kg⊥ − ξ2k2⊥ )2
Γβ(k1⊥ ) (1− z)∂⊥U(x⊥ )TaU†(x⊥ )Tb − zU(x⊥ )Ta∂⊥U†(x⊥ )Tb

i j
.

(69)
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Next-to-leading-logarithms (NLL) 

 Matrix form in the Sudakov resummation 
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Dijet with large rapidity gap 
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P1⊥

P2⊥

Ducloue,Szymanowski,Wallon 

1309.3229, only take into account  

BFKL 

Sudakov resummation will dominate  

Small angle distribution 
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Conclusion  

 Sudakov double logs can be re-summed in 
the small-x saturation formalism 

 Soft gluon and collinear gluon radiation is 
well separated in phase space 

 Shall provide arguments to apply the 
effective kt-factorization to describe dijet 
correlation in pA collisions 
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