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• Small x corresponds to high-energy 
kinematics and longitudinal coherence
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• Small x corresponds to high-energy 
kinematics and longitudinal coherence

• Boosting the collision to even higher 
energies opens up additional phase 
space for soft gluon radiation

• Enhancement of radiation space drives the 
small-x quantum evolution (BFKL)

• Exponential gluon bremsstrahlung drives 
up the gluon density: 
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Saturation and Heavy Nuclei
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• High densities enhance nonlinear multiple 
scattering on random color charges

➡Characteristic scale of the color-
charge fluctuations: Q2
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➡Nonlinear small-x evolution (BK)
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• High densities enhance nonlinear multiple 
scattering on random color charges

➡Characteristic scale of the color-
charge fluctuations: Q2

s ⇠ ↵s⇢

• Color fluctuations dynamically screen 
the IR gluon field

➡ Saturates the gluon density

➡Nonlinear small-x evolution (BK)

• Nuclei further enhance the density by

➡Universal phase of gluonic matter at high energies / densities

➡ “Color Glass Condensate” (CGC) effective theory
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The Many Roles of Spin in pA Collisions
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• (Polarized) pA collisions at RHIC bring together both spin 
and high gluon densities in novel ways.

• Within some factorization framework (collinear, hybrid, 
TMD), spin effects can occur in many places:

➡  The proton side, the nucleus side, and the fragmentation side.
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• Single inclusive hadronic final states:

➡Azimuthal modulations
p+A ! h+X

➡ Single spin asymmetries
p" +A ! h+X
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• Single inclusive hadronic final states:

• Non-hadronic final states:

• Plus:  dijets, dihadrons, diffraction, etc. ...

➡Azimuthal modulations
p+A ! h+X

➡ Single spin asymmetries
p" +A ! h+X

p+A ! h" +X

p" +A ! (`+`�) +X p+A ! (`+`�) +X

p+A ! �, Z,W± +Xp" +A ! �, Z,W± +X

p" +A ! jet+X p+A ! jet+X

➡Azimuthal modulations➡ Single spin asymmetries

TSSAs
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II.  The Collinear Framework



Collinear Factorization
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• Describes a process with one hard scale p+A(Qs) ! h(pT ) +X

pT � Q2
s,⇤

2
QCD➡ “Twist” expansion in powers of p2T

d� ⇠ fa/p(xp)⌦ fb/A(xA)⌦Ha+b!c+X(p2T )⌦Dh/c(z)
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• Describes a process with one hard scale p+A(Qs) ! h(pT ) +X
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➡ 1D parton distributions and fragmentation functions
• Transverse momentum only flows through the hard subprocess
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• Describes a process with one hard scale p+A(Qs) ! h(pT ) +X

pT � Q2
s,⇤

2
QCD

• Based on a factorization theorem derived at all orders in pQCD

➡ 1D parton distributions and fragmentation functions
• Transverse momentum only flows through the hard subprocess

➡ “Twist” expansion in powers of p2T
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Spin in the Collinear Framework
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• Polarized PDFs and FFs:  helicity         and transversity         h(x)g(x)

At leading power:               (Twist-2)
�
1/p2T

�0

• TSSAs prohibited by time reversal symmetry

Qiu & Sterman, PRL 67, 2264 (1991)

Kanazawa et al., PR D89, 111501 (2014)

Kanazawa et al., PR D91, 014013 (2015)

Metz & Pitonyak, Phys. Lett. B723, 365 (2013)
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• Polarized PDFs and FFs:  helicity         and transversity         h(x)g(x)

At leading power:               (Twist-2)
�
1/p2T

�0

• 3-parton correlations generate TSSAs (e.g., Qiu-Sterman function)

• TSSAs prohibited by time reversal symmetry

• Used to study TSSAs in             collisions p" + p

Qiu & Sterman, PRL 67, 2264 (1991)

Kanazawa et al., PR D89, 111501 (2014)

Kanazawa et al., PR D91, 014013 (2015)

Metz & Pitonyak, Phys. Lett. B723, 365 (2013)
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Nuclear Effects in the Collinear Framework
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• Each rescattering in the nucleus is higher twist: ⇠ (1/p2T )
n

➡But enhanced by the high density: ⇠ (Q2
s)

n

p+A(Qs) ! h(pT ) +X
p+A(Qs) ! h(pT ) +X
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• Resummation shifts the nuclear 
PDF to higher x (suppression)
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• Each rescattering in the nucleus is higher twist: ⇠ (1/p2T )
n

➡But enhanced by the high density: ⇠ (Q2
s)

n

• Resummation shifts the nuclear 
PDF to higher x (suppression)

Opportunity:  How does this shift in x affect 
the complete twist-3 picture of  TSSAs?

p+A(Qs) ! h(pT ) +X
p+A(Qs) ! h(pT ) +X



Momentum Broadening in the Collinear Formalism
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Kang et al., arXiv: 1605.07175
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• Multiple rescattering on the nucleus 
builds up transverse momentum

Kang et al., PRL 112, 102001 (2014)
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Kang et al., arXiv: 1605.07175
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• Multiple rescattering on the nucleus 
builds up transverse momentum

Kang et al., PRL 112, 102001 (2014)

• Broadening from pp to pA measures 
double parton scattering

p+A(Qs) ! (`+`�)(Q2, pT ) +X

➡        is a Twist-4 collinear observablehp2T i

hp2T i ⌘
Z

dp2T p2T

d�
dQ2dp2

T

d�
dQ2

➡Twist-4 factorization holds through NLO.

Opportunity:  What spin-related azimuthal 
modulations are possible within this approach?

�hp2T i ⌘ hp2T ipA � hp2T ipp

Q2 � Q2
s , ⇤

2
QCD
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III.  The “Hybrid” Framework



A Hybrid Factorization:  Collinear + CGC
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Dumitru & Jalilian-Marian, PRL 89, 022301 (2002)

Dumitru et al., NPA 765, 464 (2006)

Chirilli et al., PR D86, 054005 (2012)
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• Collinear proton PDF and FF couple to transverse momentum in 
CGC quark / gluon scattering amplitudes in coordinate space 

Gelis & Jalilian-Marian, PR D66, 014021 (2002)
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Dumitru & Jalilian-Marian, PRL 89, 022301 (2002)

Dumitru et al., NPA 765, 464 (2006)

Chirilli et al., PR D86, 054005 (2012)

d� ⇠ fa/p(xp)⌦ F.T.
h⇣

S(2)(r?Qs) + . . .
⌘

⇥Ha+b!c(r?)
i
⌦Dh/c(z)

• Collinear proton PDF and FF couple to transverse momentum in 
CGC quark / gluon scattering amplitudes in coordinate space 

➡Collinear divergences at NLO generate DGLAP evolution

Gelis & Jalilian-Marian, PR D66, 014021 (2002)
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p+A(Qs) ! h(pT ) +X

➡Rapidity divergences at NLO generate BK evolution
pT➡Maps onto collinear factorization at large 
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Some Early Hybrid Descriptions of TSSAs
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Boer et al., PR D74, 074018 (2006) Kang & Yuan, PR D84, 034019 (2011)

• Early attempts combined the idea of spin / momentum 
correlations (Sivers / Collins effects) with CGC amplitudes

➡Need a full systematic treatment of transverse momentum

➡ Incorporated generic CGC features, like             scalingf
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Boer et al., PR D74, 074018 (2006) Kang & Yuan, PR D84, 034019 (2011)

• Early attempts combined the idea of spin / momentum 
correlations (Sivers / Collins effects) with CGC amplitudes

• CGC rescattering tends to dilute the TSSA

➡Need a full systematic treatment of transverse momentum
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A Modern Hybrid Calculation of a TSSA

• Twist-3 Qiu-Sterman function in the proton generates the TSSA, 
which is dressed with CGC multiple rescattering.

➡The nucleus still plays a passive role, diluting a pre-existing TSSA

Schäfer & Zhou, PR D90, 034016 (2014)

p" +A(Qs) ! �(pT ) +X

p2T , Q
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A Modern Hybrid Calculation of a TSSA

• Twist-3 Qiu-Sterman function in the proton generates the TSSA, 
which is dressed with CGC multiple rescattering.

➡The nucleus still plays a passive role, diluting a pre-existing TSSA

Schäfer & Zhou, PR D90, 034016 (2014)

p" +A(Qs) ! �(pT ) +X

p2T , Q
2
s � ⇤2

QCD

AN ⇠ f(�)⌦ S

(2)(pT )⌦ TF (xp)

S

(2)(pT )⌦ f(xp)

Opportunity:  What is the TSSA in a full Twist-3 + CGC computation?
How does it compare with the x shift from the collinear formalism?
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The Odderon:  TSSA Generated by Saturation Physics
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Kovchegov & MS, PR D86 034028 (2012)

• There is an exotic “odderon” component 
of the CGC gluon fields which has the 
right quantum numbers to generate TSSAs.

p" +A(Qs) ! h(pT ) +Xu
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Kovchegov & MS, PR D86 034028 (2012)

• There is an exotic “odderon” component 
of the CGC gluon fields which has the 
right quantum numbers to generate TSSAs.

➡Can generate TSSAs by coupling to proton transversity

p" +A(Qs) ! h(pT ) +Xu
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QCD

➡TSSAs in the forward direction are sensitive to the odderon 
interaction with the unpolarized nucleus.

➡ Effect is very small:  quark mass and 5+ gluon exchange
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Odderon-Mediated TSSAs in the Backward Direction
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• The odderon itself averages to zero over the unpolarized nucleus.

Zhou, PR D89 074050 (2014)
Gockeler et al., PRL 98 222001 (2007)
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• The odderon itself averages to zero over the unpolarized nucleus.

Zhou, PR D89 074050 (2014)

➡But may be nonzero due to the distortion in a transversely 
polarized target (GPD E)

➡TSSAs in the backward direction are sensitive to the small-
x odderon field of the polarized proton

Gockeler et al., PRL 98 222001 (2007)



Odderon-Mediated TSSAs in the Backward Direction
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• The odderon itself averages to zero over the unpolarized nucleus.

Zhou, PR D89 074050 (2014)

➡But may be nonzero due to the distortion in a transversely 
polarized target (GPD E)

➡TSSAs in the backward direction are sensitive to the small-
x odderon field of the polarized proton

Gockeler et al., PRL 98 222001 (2007)

Opportunity:  Does the C-odd odderon contribute 
to the TSSAs of protons vs antiprotons at FNAL?
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IV.  The TMD Framework



Transverse-Momentum-Dependent Factorization
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• Describes a process with a hard scale and a secondary scale:

p+A(Qs) ! h(M2 = Q2, pT ) +X Q2 � p2T , ⇤2
QCD

d� ⇠ fa/p(xp, kpT )⌦ fb/A(xA, kAT )⌦Ha+b!c+X(Q2)⌦Dh/c(z, khT )
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Transverse-Momentum-Dependent Factorization
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➡ 3D parton distributions and fragmentation functions

• Describes a process with a hard scale and a secondary scale:

p+A(Qs) ! h(M2 = Q2, pT ) +X Q2 � p2T , ⇤2
QCD

d� ⇠ fa/p(xp, kpT )⌦ fb/A(xA, kAT )⌦Ha+b!c+X(Q2)⌦Dh/c(z, khT )

➡Multiple scattering may not be suppressed: vs
⇣
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➡ 3D parton distributions and fragmentation functions

• Based on a factorization theorem derived at all orders in pQCD

• Describes a process with a hard scale and a secondary scale:

p+A(Qs) ! h(M2 = Q2, pT ) +X Q2 � p2T , ⇤2
QCD

d� ⇠ fa/p(xp, kpT )⌦ fb/A(xA, kAT )⌦Ha+b!c+X(Q2)⌦Dh/c(z, khT )

➡Multiple scattering may not be suppressed: vs
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• The Drell-Yan process is a clean application of TMD factorization

Kang & Xiao, PR D87 034038 (2013)

➡ Forward DY couples to the small-x 
antiquark distribution of the nucleus

➡TSSA is generated by the proton TMD 
and dressed by CGC rescattering

p+A(Qs) ! (`+`�)(Q2, pT ) +X
p+A(Qs) ! (`+`�)(Q2, pT ) +X

Q2 � p2T , Q2
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• The Drell-Yan process is a clean application of TMD factorization

Kang & Xiao, PR D87 034038 (2013)

➡ Forward DY couples to the small-x 
antiquark distribution of the nucleus

➡TSSA is generated by the proton TMD 
and dressed by CGC rescattering

• Momentum broadening dilutes the TSSA 
compared to pp

p+A(Qs) ! (`+`�)(Q2, pT ) +X
p+A(Qs) ! (`+`�)(Q2, pT ) +X

Q2 � p2T , Q2
s
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• Small-x gluon TMDs are relevant for hadron production in the 
backward direction in pA collisions. 
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• Small-x gluon TMDs are relevant for hadron production in the 
backward direction in pA collisions. 
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O(x, k2T )

Boer et al., PRL 116 122001 (2016)

• In the small-x limit, the T-odd gluon TMD is generated by the 
(spin dependent matrix element of) the odderon!

➡Agrees with the hybrid framework calculation

• The T-odd part of TMDs is a source of TSSAs



p2

p1

Factorization Breaking in pA

M. Sievert 23 / 28Spin and Saturation at RHIC

• Collisions with hadronic initial and final states are susceptible to 
factorization-breaking color entanglement.

Mulders & Rogers, PR D81 094006 (2010)

Mulders & Rogers, arXiv: 1102.4569

Rogers, PR D88 014002 (2013)
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• Collisions with hadronic initial and final states are susceptible to 
factorization-breaking color entanglement.

Mulders & Rogers, PR D81 094006 (2010)

Mulders & Rogers, arXiv: 1102.4569

Rogers, PR D88 014002 (2013)

p+A(Qs) ! (h1 + h2)(M
2 = Q2, pT ) +X

➡Can elevate power-suppressed asymmetries to leading order
p+A ! h+ � +X : (h�) Longitudinal Double Spin Asymmetry

Gamberg & Kang, Phys. Lett. B696 109 (2011)

➡ Starts with the exchange of 2 gluons

Opportunity:  Need a full profile assuming TMD factorization 
holds in order to extract the factorization-breaking effects.

Q2 � p2T , ⇤2
QCD
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• TMDs of a heavy nucleus can be decomposed in terms of the 
TMDs of its nucleons

Kovchegov & MS, PR D89 054035 (2014)

Kovchegov & MS, NP B903 164 (2016)
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• TMDs of a heavy nucleus can be decomposed in terms of the 
TMDs of its nucleons

Kovchegov & MS, PR D89 054035 (2014)

Kovchegov & MS, NP B903 164 (2016)

➡Nuclear            coupling and CGC rescattering can generate 
TMD mixing between the nucleons and the nucleus

(~L · ~S)

➡Multiple simultaneous mixings allows extraction of the            
coupling and predictive power for other channels.(~L · ~S)

p+A(Qs) ! (`+`�)(Q2, pT ) +X

Q2 � p2T , Q2
s

Opportunity:  Spectator neutron tagging at 
an EIC.  Signatures of OAM in the proton?
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Balitsky & Tarasov, JHEP 1510 017 (2015)

Balitsky & Tarasov, arXiv: 1603.06548

• High energy “rapidity factorization” with a rapidity cutoff.

• Combines OPE and background field methods to evaluate the 
gluon TMD in a variety of kinematic regimes.

⊗

⊗

⌦



A Unifying Paradigm for Evolution

M. Sievert 26 / 28Spin and Saturation at RHIC

Balitsky & Tarasov, JHEP 1510 017 (2015)

Balitsky & Tarasov, arXiv: 1603.06548

• High energy “rapidity factorization” with a rapidity cutoff.

• Combines OPE and background field methods to evaluate the 
gluon TMD in a variety of kinematic regimes.

➡Derived evolution which is valid at large x, at small x, and an 
interpolation which connects both at leading-log accuracy.

➡Reproduces DGLAP evolution at large x, BK evolution at 
small x, and CSS (TMD) evolution at intermediate x.

⊗

⊗

⌦



A Unifying Paradigm for Evolution

M. Sievert 26 / 28Spin and Saturation at RHIC

Balitsky & Tarasov, JHEP 1510 017 (2015)

Balitsky & Tarasov, arXiv: 1603.06548

• High energy “rapidity factorization” with a rapidity cutoff.

• Combines OPE and background field methods to evaluate the 
gluon TMD in a variety of kinematic regimes.

➡Derived evolution which is valid at large x, at small x, and an 
interpolation which connects both at leading-log accuracy.

➡Reproduces DGLAP evolution at large x, BK evolution at 
small x, and CSS (TMD) evolution at intermediate x.

⊗

⊗

⌦

Opportunity:  Is this a basis for a universal evolution 
formalism?  Does it still work beyond leading log?
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Kovchegov et al., JHEP 1601 072 (2016)
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• Polarization transfer at small x is suppressed 
overall, but has strong double-log evolution

• Ladder graphs seem to imply very strong small-
x evolution. 

Hatta et al., JHEP 0908 007 (2009)
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Opportunity:  Could there be polarization at small x?  
Estimates are borderline so far.
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Conclusions and Opportunities

• The intersection of spin and saturation physics is starting to 
mature; the two fields are being integrated from the bottom up.

• A series of complementary frameworks, backed by demonstrated 
factorizations, formulate pA collisions from many directions.

• Saturation effects often dilute pre-existing asymmetries, but they 
can also generate them anew through unique CGC mechanisms.

• The RHIC spin and pA programs will usher in the coming EIC era.


