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A very brief history of recent heavy ion physics

@ 1980s and 1990s—AGS and SPS... QGP at SPS!
@ Early 2000s—QGP at RHIC! No QGP at SPS. d+Au as control.

o Mid-late 2000s—Detailed, quantitative studies of strongly coupled QGP.
d+Au as control.

@ 2010—Ridge in high multiplicity p+p (LHC)! Probably CGC!
o Early 2010s—QGP in p+Pb!
o Early 2010s—QGP in d+Au!

@ Mid 2010s and now-ish—QGP in high multiplicity p+p? QGP in
mid-multiplicity p+p?? QGP in d4+Au even at low energies???
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@ Early 2000s—QGP at RHIC! No QGP at SPS. d+Au as control.

o Mid-late 2000s—Detailed, quantitative studies of strongly coupled QGP.
d+Au as control.

@ 2010—Ridge in high multiplicity p+p (LHC)! Probably CGC!
o Early 2010s—QGP in p+Pb!
o Early 2010s—QGP in d+Au!

@ Mid 2010s and now-ish—QGP in high multiplicity p+p? QGP in
mid-multiplicity p+p?? QGP in d4+Au even at low energies???

“Twenty years ago, the challenge in heavy ion physics was to find the QGP.
Now, the challenge is to not find it." —Jirgen Schukraft, QM17
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Testing hydro by controlling system size

J.D. Orjuela Koop et al
Phys. Rev. C 93, 044910 (2016)
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@ What about small systems?
And lower energies?
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@ Use collisions species and
energy to control system size,
test limits of hydro applicability
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Multiparticle correlations in small systems

CMS, Phys. Lett. B 765 (2017) 193-220
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@ Multiparticle correlations: a strong case for collectivity in small systems

@ Gaussian fluctuations:

{2} =/vi+o02+§ § non-flow, o variance

v{2,|An| > 2} =,/vZ+ 02  eta gap removes some non-flow

{4} =~ v{6} ~ vn{8} = \/ﬁ higher orders remove non-flow

o Can multiparticle correlations be measured in small systems at RHIC?
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2016 d+Au beam energy scan in PHENIX

200 GeV 62 GeV

Central Trigger
Enhancement!

Central Trigger
Enhancement!
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BBC Charge South

d+Au collision energy | total events analyzed | central events analyzed
200 GeV 636 million 585 million

62.4 GeV 131 million 76 million

39 GeV 137 million 49 million

19.6 GeV 15 million 3 million
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PHENIX

@ Central arms (CNT) cover
|n| < 0.35, tracking, momentum
determination, PID, etc.

o Forward vertex detector (FVTX)
covers 1 < |n| < 3, tracking only
(no momentum vector
information)
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@ Beam beam counters (BBC): ’ fors

. . . West Beam View East
centrality and vertex determination e — s
e BBC and FVTX used for triggering /%"”1,{%
e BBC south and FVTX_sou_th used 5 J/\;gg\l ‘ |
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. i ; prim >
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The PHENIX forward vertex detector
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A Multi-Phase Transport model

AMPT basic features
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Particle production
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Expansion

Hadronization

Final stage

MC Glauber
String melting
None

Parton scattering
(tunable)

Spatial coalescence

Hadron cascade
(tunable)

@ AMPT has significant success in describing flow-like signatures

(for low pr and pr-

integrated)

@ AMPT produces final state particles over the full available phasespace
—possible to perform exact same analysis on data and model
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AMPT with no scattering
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@ Turn off scattering in AMPT—remove all correlations with initial geometry
O parton = 0 and 0hadron = 0
o Participant plane v» goes to zero

@ Other sources of correlation remain—non-flow
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Intermission

Event plane results
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Vo Vs p7, comparisons to AMPT
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@ Event plane v» vs pr measured for all energies
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Vo Vs p7, comparisons to AMPT
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@ Event plane v» vs pr measured for all energies

o AMPT flow only (parton plane) shows good agreement at low pr
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Vo Vs p7, comparisons to AMPT
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@ Event plane v» vs pr measured for all energies
o AMPT flow only (parton plane) shows good agreement at low pr

@ AMPT flow-+non-flow (event plane) shows reasonable agreement for all pr
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Vo Vs p7, comparisons to AMPT
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AMPT flow only (parton plane) shows good agreement at low pr
AMPT flow+non-flow (event plane) shows reasonable agreement for all pr

AMPT non-flow only (event plane with no scattering) far under-predicts
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Vo Vs p7, comparisons to AMPT
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Important: non-flow is not additive

RHIC AGS Users Meetin

3

0.5 25 3

15 2
P, [GeVic]

AMPT flow only (parton plane) shows good agreement at low pr
AMPT flow+non-flow (event plane) shows reasonable agreement for all pr

AMPT non-flow only (event plane with no scattering) far under-predicts
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v3 vs pr—a further test of geometry engineering

= 02 T e e 02 e e T T
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@ v3 is non-zero and lower in d+Au compared to *He+Au

o Excellent further confirmation that geometry engineering works
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v3 vs pr—a further test of geometry engineering

0.1

PHENIX 3He+Au v5 PRL115, 142301 e
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@ v3 is non-zero and lower in d+Au compared to *He+Au
o Excellent further confirmation that geometry engineering works

@ New hydro prediction from Bjérn shows excellent agreement with data
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Intermission

@ Positive v vs pr observed at all energies

@ Hydro theory describes 200 GeV and 62.4 GeV with flow only while 39 and
19.6 GeV must have some significant non-flow

o AMPT suggests flow dominates at low pr, mix of flow+non-flow at mid
and high pr, and the non-flow is non-additive

@ v3 vs pr results in d/*He+Au confirm geometry engineering, excellent
agreement with hydro
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V2 VS 1)
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Vo Vs 77, comparison with AMPT
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e AMPT flow only (parton plane) agrees with mid and forward rapidity very
well, but shows higher v» at backward for lower energies
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Vo Vs 77, comparison with AMPT
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e AMPT flow only (parton plane) agrees with mid and forward rapidity very
well, but shows higher v» at backward for lower energies

e AMPT flow+non-flow (event plane) is very similar at mid and forward

o AMPT flow+non-flow shows striking anti-correlation at backward rapidity
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Vo Vs 77, comparison with AMPT
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AMPT flow only (parton plane) agrees with mid and forward rapidity very

well, but shows higher v» at backward for lower energies

AMPT flow+non-flow (event plane) is very similar at mid and forward
AMPT flow+non-flow shows striking anti-correlation at backward rapidity

@ AMPT non-flow only shows nothing at mid and forward, large v» at
backward rapidity near the detector (highly non-additive)
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Vo Vs 77, comparison with AMPT
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AMPT flow only (parton plane) agrees with mid and forward rapidity very

well, but shows higher v» at backward for lower energies
e AMPT flow+non-flow (event plane) is very similar at mid and forward
o AMPT flow+non-flow shows striking anti-correlation at backward rapidity
@ AMPT non-flow only shows nothing at mid and forward, large v» at
backward rapidity near the detector (highly non-additive)

Hydro theory at 200 GeV very similarly to AMPT and data
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Intermission

@ More hydro theory calculations for 1 dependence would be very helpful

@ The data shows large forward /backward asymmetry that decreases with
energy, but is that what'’s really happening?

e AMPT flow only shows forward/backward asymmetry at all energies

o AMPT flow-+non-flow shows strong anticorrelation between flow and
non-flow at backward rapidity that brings v» backward down significantly

@ The non-flow is highly non-additive
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Multiparticle correlations
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Components and cumulants in p+Au and d-+Au at 200 GeV
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o Real v»2{4} in d4+Au, complex v»{4} in p+Au

o Fluctuations could dominate in the p+Au (v2{4} =~ \/vi — 0?)
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Components and cumulants in p+Au and d+Au in AMPT

d+Au p--Au
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o AMPT similar to data—real v2{4} in d+Au, complex v»{4} in p+Au

o Fluctuations could dominate in the p+Au (v2{4} =~ \/vi — 0?)
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Eccentricity distributions and cumulants

£0.035—p+Au, [8,(5 027, 0=014,5 = 051,k = 2.86-
o [—d+Au, [8 [=0.56, 0 =0.24,s =-0.16, k = 1.971
; 0.03; 2 E
& F E
éo'ozsg E p+Au d+Au
s 002 3 (e2{2}) 0.303 0.610
0_015; é <E > 0.270 0.560
001; 3 (e2{4}) Approx. 0.232  0.505
F 1 (e2{4}) Exact 0.166  0.508
0.005 B
% 0102 0504 05 06 0.7 08 08 1

eccentricity >3

o Eccentricity cumulants: e2{2} = ((£3))"/2, e2{4} = (—((e3) — 2(£3)?))"/*
@ We don't have the v, distribution but in the hydro limit v, « €,

@ Gaussian? No. Small relative variance? No.

€2{4} = /€2 — 02 doesn't apply!



Eccentricity distributions and cumulants

£0.085 — prAu, [6,(= 027, 0=014,5 =051, k =2.86
o E—d+Au, BDZOSGU 0.24,s =-0.16, k = 1.979
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eccentricity €,
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@ the variance brings £2{4} down
@ positive skew brings €2{4} further down, negative skew brings it back up

@ kurtosis > 2 brings £2{4} further down, kurtosis < 2 brings it back up
—recall Gaussian has kurtosis = 3

@ Some math details in the backups
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v2{2} and v2{4} in the d+Au beam energy scan

200 GeV 62.4 GeV 39 GeV 19.6 GeV
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%, e V,{2 ~— 1<in<3
o . 42 1 PHUENX I 1 i ]
e, preliminary
0.08f .\\N—Nm‘:- b5 T oeeoee0eeeettesesetetes + .-’---.-._‘. i 4
Seseeseseseesesasenser,, 0
0.06[ T T T 1
0.04r T T T 1
0.021 T T T 1
TTRPTTRR POV PP PP THVRT FRUPLTVPI V% UL FEVT FOVEY VYL FHTPY IYITI FIVTLTIVINTTVEY IVTF SVF VO IVTY IFVY IVPTIIVTIFIVIV VUV VPTY FVOV V00 PVPTE FUPPL FVVT POV POVOU POY POV PV |
51015202530354045 5 1015202530354045 5 1015202530354045 5 1015202530354045
Niecks Niacks Niacks Niecks

o v»{2} relatively constant with N/Y2X and collision energy
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v2{2} and v2{4} in the d+Au beam energy scan

200 GeV 62.4 GeV 39 GeV 19.6 GeV

G122k d+AU ys, = 200 GeV (@) F ' d+AU Ys,, = 62.4 GeMD) T | d+AU |s,, =30 GeV (€) +  d+AU ys,, = 19.6 Gev(0)]
Va2 sl 1<0nl<3
0.1 .'-, T preliminary T T ]
0.08F \M } s I 4& A ]
M. D
0.06F I by It + v :
'“ nn-..-,-—*a‘** 4 79% donfidence level that
0.04f + } 1 {4} renl for 10 < N, < 20}
0.02F 1 1 I ]

1 1 1 1 1 1 1 1 PET1 FETT ST PARTI PRRT AR L. AU U PRTRT PUTT WUT1 FYTRY FYUTE FRUTY FIVRY FTUT] FRTT (ATR1 FAUTt FiTi 1 1 1 1 1 1 1 1 1
5101520 2530354045 5 101520 2530354045 5 101520 2530 354045 5 101520 25 30 3540 45
Naoes Niacks Nicks Naoks

o v»{2} relatively constant with N/Y2X and collision energy

@ Observation of real v»{4} in d+Au at all energies!

@ Strong (?) evidence for collectivity
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v2{2} and v2{4} in the d+Au beam energy scan

200 GeV 62.4 GeV 39 GeV 19.6 GeV

G2t ,d+Au V5. =200 GeV (@) + ' d+AU |5, = 62.4 GeMD) T | d+AU ys,, =30 GeV(©) + d+AU ys,, = 19.6 Gev(0)]
'.. *v,{2} =v,{4} Pr??mx 1<n<3
0. .'-, T preliminary T T ]
0.08f R } I A ]
.""w. o
0.06f L ; Ioptt 1 v ]
'“ nn‘-".-—*a‘ﬂ 4 79% donfidence level that

0.04f + } 1 {4119 renl for 10 < N, <
0.02F 1 1 1 ]
FETE PRTTL FTTR PTRTE PRTRA PAARA L. UK FUPTERT PUTT WYT) FYTRL ITATi [RTd FATR1 [TRTI FTATY FYPN (AT] FIT) P PTETY FTTTY FYTRY PRTT FTOTY ITey

1 1 1 1 1 1 1 1
51015202530354045 5 1015202530354045 5 1015202530354045 5 10 15 20 2530 354045

FVTX FVTX FVTX FVTX

Nlracks Nlracks Ntracks vaacks
[P ‘ ——— —
> F d+Au central, 10 < N™ < 30 3
0147 tracks |
i 210 210 ]
012ty W0 —oian E
. O.l; .
@ Select 10 < NFYIX < 30, integrate E ]
0.08—~ =
@ Trend of.vzl{Z} ar:jd v2{4} merging 0,061 E
as /Syy is lowere F ]
N 0.04 E
@ AMPT sees the same trend 0.02 E
G: All AMPT curves scaled by 118 ;E,,mi,,fﬂé ]

20 30 40 50 607080 10° x10?
s, (GeV)
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AMPT with no scattering

%107 %10
o 0.35 0 e 02500y
= E AMPT d+Au |s,=200GeV 1 & EAMPT d+Au |s,, =200 GeV no scattering 3
2 0.25F 1<hi<3 4 2 g2 1<ij<3 ]
1) £ o 4 1 o £ o [ 9
=3 C \ . 1 2 C . |
E 02 with scattering2m® 4 £o.1s- no scattering » 2mm
(=] E ] o E ]
0.15F E 0.1~ E
0.1~ | - 0.05 * E
E = E "8aay, ]
00sC ', RS ERE E
C [ | C ¢ |
BRI LI SV F@ Lo
0.02- o Cf4}= M 2RmS  0.02F o C{4} = A 20200
_ 001 l 3 .00 vo{4} zero/complex E
T o I 13 o bii) sas . sea, ;
i IR 1 ¢ ' i
-0.01F teigd } -0.01- E
E vo{4} real E i
0020, d 002K )
0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90
NFVTX NFVTX
tracks tracks

@ Turn off scattering in AMPT—remove all correlations with initial geometry

@ Components show different trend but are still non-zero

@ But v>{4} goes from real to ~zero—connection between real v.{4} and
geometry in d4+Au
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Final thoughts

Positive v» vs pr observed from 200 GeV all the way down to 19.6 GeV
e 200 and 62.4 GeV can be described either with flow only or with
flow+non-flow
e 39 and 19.6 GeV require significant non-flow in any scenario
Positive v3 vs pr observed in 200 GeV
o Lower than v3 in 3He+Au as expected from initial geometry —geometry
engineering works
Positive v» vs 1 observed from 200 GeV down to 39 GeV
@ 200 GeV can be described as flow only for almost all n
o Lower energies can be described as flow only for mid and forward rapidity
o Lower energies show possible flow/non-flow anti-correlation at backward
rapidity—this can obscure what is likely a strong forward/backward
asymmetry at all energies
Real valued v2{4} observed from 200 GeV all the way down to 19.6 GeV
o Multiparticle correlations generally held as best evidence for collectivity
o There is still the risk of some non-flow contribution to v, {4}
e It's very important to understand the details of the fluctuations
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Additional Material

Additional Material
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Cumulants: a closer inspection

Clearly, “fluctuations” are doing a lot of work for us. What do we mean, and
how well do we understand them?

o We always say v>{4} =~ v2{6} = w»{8} ~ \/vZ — 02
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Cumulants: a closer inspection

Clearly, “fluctuations” are doing a lot of work for us. What do we mean, and
how well do we understand them?

o We always say v>{4} =~ v2{6} = w»{8} ~ \/vZ — 02

@ Is that really true?
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Cumulants: a closer inspection

Clearly, “fluctuations” are doing a lot of work for us. What do we mean, and
how well do we understand them?
o We always say v>{4} =~ v2{6} = w»{8} ~ \/vZ — 02
@ Is that really true?
@ Not necessarily! (the theorists know this but many experimentalists did
not get the memo)
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Cumulants: a closer inspection

Clearly, “fluctuations” are doing a lot of work for us. What do we mean, and
how well do we understand them?
o We always say v>{4} =~ v2{6} = w»{8} ~ \/vZ — 02
@ Is that really true?
@ Not necessarily! (the theorists know this but many experimentalists did
not get the memo)
@ Two assumptions are required to get there:
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Cumulants: a closer inspection

Clearly, “fluctuations” are doing a lot of work for us. What do we mean, and
how well do we understand them?
o We always say v>{4} =~ v2{6} = w»{8} ~ \/vZ — 02
@ Is that really true?
@ Not necessarily! (the theorists know this but many experimentalists did
not get the memo)

@ Two assumptions are required to get there:
o Gaussian fluctuations
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Cumulants: a closer inspection

Clearly, “fluctuations” are doing a lot of work for us. What do we mean, and
how well do we understand them?
o We always say v>{4} =~ v2{6} = w»{8} ~ \/vZ — 02
@ Is that really true?
@ Not necessarily! (the theorists know this but many experimentalists did
not get the memo)

@ Two assumptions are required to get there:

o Gaussian fluctuations
o Small relative variance, o/v, < 1
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Cumulants: a closer inspection

Clearly, “fluctuations” are doing a lot of work for us. What do we mean, and
how well do we understand them?
o We always say v>{4} =~ v2{6} = w»{8} ~ \/vZ — 02
@ Is that really true?
@ Not necessarily! (the theorists know this but many experimentalists did
not get the memo)

@ Two assumptions are required to get there:

o Gaussian fluctuations
o Small relative variance, o/v, < 1

@ Are these assumptions valid? Let's have a look...
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Eccentricity distributions and cumulants

£0.035—p+Au, [&,(= 027, 0=014,5 = 051,k = 2.86-
o [—d+Au, [8 [=0.56, 0 =0.24,s =-0.16, k = 1.971
g 0.03; 2 E
8 F E
éo'ozsg E p+Au d+Au
s 002 3 (e2{2}) 0.303 0.610
0_015; é <€ > 0.270 0.560
001; 3 (e2{4}) Approx. 0.232  0.505
F 1 (e2{4}) Exact 0.166  0.508
0.005 B
% 01702 03 04 05 06 0.7 08 08

[

eccentricity >3

o Eccentricity cumulants: e2{2} = ((£3))"/?, e2{4} = (—((&3) — 2(e3)?))/*

@ We don't have the v, distribution but in the hydro limit v, x €,
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Eccentricity distributions and cumulants

£0.035—p+Au, [&,(= 027, 0=014,5 = 051,k = 2.86-
o [—d+Au, [8 [=0.56, 0 =0.24,s =-0.16, k = 1.971
g 0.03; 2 E
8 F E
éo'ozsg E p+Au d+Au
s 002 3 (e2{2}) 0.303 0.610
0_015; é <€ > 0.270 0.560
001; 3 (e2{4}) Approx. 0.232  0.505
F 1 (e2{4}) Exact 0.166  0.508
0.005 B
% 01702 03 04 05 06 0.7 08 08

[

eccentricity >3

o Eccentricity cumulants: e2{2} = ((£3))"/?, e2{4} = (—((&3) — 2(e3)?))/*
@ We don't have the v, distribution but in the hydro limit v, x €,

o Gaussian? No. Small relative variance? No.
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Back to basics (a brief excursions)

The (raw) moments of a probability distribution function f(x):

/+<><> x"f(x)dx

— o0

pn = (x")

The moment generating function:

— 00 — o0 n

" +oo " 400 t" R e "
I\/Ix(t)E<et>:/ e™f(x)dx = ZO X f(X)dX:ZOMnH

Moments from the generating function:

_ d"M.(t)

fin dtn

t=0

Key point: the moment generating function uniquely describe f(x)
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Back to basics (a brief excursions)

Can also uniquely describe f(x) with the cumulant generating function:

_ R
Ke(t) = InM(t) = Ky
n=0
Cumulants from the generating function:
n
o — d"K«(t)
datm |,

Since Ki(t) = In M. (t), M(t) = exp(Kx(t)), so

_d"exp(K(t)) o d" In M,(t)
B dtn e

t=0 t=0

End result: (details left as an exercise for the interested reader)

Mo = Z B k(K1 ooy Kn—kt1) (= Ba(F1, o Kn—k+1))
k=1
Kn = Z(_l)kil(k_ 1)!Bn,k(ul7-~'7,u/n7k+l)7

k=1
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Back to basics (a brief excursions)

Evaluating the Bell polynomials gives

x)y = k1
() = k2+hi
<><3> = K3+ 3K1Ko + /@%
(X4) = K4+ 4K1K3 + 353 + 6/{?/&2 + lﬂ‘

One can tell by inspection (or derive explicitly) that k1 is the mean, k> is the
variance, etc.
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Back to basics (a brief excursions)

Subbing in x = v,, k2 = o?, we find
(<V3> = Vi46vio° +30" +4vars + m)

—(2<v,?>2 = 2v,‘,‘+4v3(72+204)

1

—v,‘,1 + 2v302 + ot + 4vyKk3 + Ka

(va) = 2(vi)?

Skewness s: k3 = so°
Kurtosis k: k4 = (k — 3)o*

Vn{2} — (Vs +O'2)1/2
vo{d} = (vi—2v20% —4v,so” — (k —2)o*)'/*

So the correct form is actually much more complicated than we tend to think...
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Eccentricity distributions and cumulants

20.035;7p+Au [8,0F 0.27, 0= 0.14, 5 = 051, k = 2.86 ]
<] C—d+Au, @DZOSGU 0.24,s=-0.16,k = 19ﬁ
S 003F 1
N £ ]
EO'OZS? E p+Au d+Au
§ 002" 1 (e2{2]) 0.303  0.610
0_015; é <E > 0.270 0.560
ook 3 (e2{4}) Approx. 0.232  0.505
TE 7 (e2{4}) Exact 0.166  0.508
0.005 ]
% 01702 03 04 05 06 0.7 08 0.9

=

eccentricity €,
e2{4} = (€3 — 2e30° — 4easo” — (k — 2)a™)/*
@ the variance brings 2{4} down

@ positive skew brings €2{4} further down, negative skew brings it back up

@ kurtosis > 2 brings e2{4} further down, kurtosis < 2 brings it back up
—recall Gaussian has kurtosis = 3
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Eccentricity distributions and cumulants

L1072 Lx107

»n 0.3¢ T T T T 1w 0.3¢ T T T T |
c £ —— +Au \/? 200 GeV 1c C " —~— d+Au \/? 200 Ge ]
S h25F PH.CENIX T<hni<3 3 8gosE PH.CENIX T'<;m<3 3
8_ -250 4 preliminary . @m0 i 8_ e . preliminary . [@m 3
E 02 2mm@ 3 E 020 2@
8 iy e ] 8 C 1] ]
0.15F .. - 0.15F [ =
F e 3 F s 3
0.1~ ue ik 0.1 ] . B
C " | c 1] |
0.05- |,.“““':_.¢*£ 0.05- ”““”""E
?(a)l fr b e ?(a)l bbb ]
0.025 N . cf4= mm}+ im:zttﬁi 0.02 .« C{4} = MM 2020
0.01- ., .. Lk 4 oo E
S : e — ]
© = 1 © £ ++§ 00----.‘-"‘#‘;
-0.01- 4 -001 E
002E0), L 002

0O 5 10 15 20 25 30 35 40 45 0O 5 10 15 20 25 30 35 40 45
Niracks Niracks

v{4} = (vs — 2v30” — 4vaso® — (k — 2)o™)/*

o Eccentricity fluctuations alone go a long way towards explaining this

e Additional fluctuations in the (imperfect) translation of &> to v»?
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How to apply an eta gap in the FVTX?

A A

PHENIX drapidit PHENIX
FVTX South ey FVTX North
-3<n<-1 1 1<n<3

o v»{2} and v»{4}—use tracks anywhere in the FVTX
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How to apply an eta gap in the FVTX?

A B

PHENIX drapidit PHENIX
FVTX South ey FVTX North
-3<n<-1 1 1<n<3

o v»{2} and v»{4}—use tracks anywhere in the FVTX

e v»{2,|An| > 2}—require one track in south (backward rapidity) and one
in north (forward)
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Can we apply an eta gap to get a better handle on the non-flow?

290 GeV 62.4 GeV 39 GeV 19.6 GeV

G12F d+AU Y, = 200 GeV (@) + | d+AU \s, = 62.4 GeD) T | d+Au ys,, =30 GeV (©) T d+AU |s,, = 19.6 Gev ()1
W eVi2) AT R— 1< <3
0.r ".. T preli/r\ninary T T ]
Y S 14 I A :
..."""“m.p“ D
0.06f S Ioftt 1 v ]
'“ 0"'"'.--,,0‘*.* [ 79% donfidence level that
0.04f + { 1 4,43 14 renl for 10 < N, < 20}
0.02F 1 1 1 ]

1 1 Ll Loooalisual 1 FETY PP PYTRY PR AP PPTR . U 70 P P S Y PYRTE PRTTY YUY FTRTY RYUTE FYRRY PUTT1 FOUT URY IPRTUR, FUL U PPUTIFTTTY FOTRL POTTY FYPTY FIvY
51015202530354045 5 1015202530354045 5 1015202530354045 5 101520 25 30 3540 45
Niacks Niacks Niracks Niacks

o {2} and v»{4} vs NFYIX all tracks anywhere in FVTX
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Can we apply an eta gap to get a better handle on the non-flow?

290 GeV 62.4 GeV 39 GeV 19.6 GeV

G12F d+AU Y, = 200 GeV (@) + ' d+AU \s, = 62.4 GewB) T | d+Au Vs, =30 GeV (©) T d+AU |s,, = 19.6 Gev ()1
%, V{2 =V,{4 - - V,{2,|An|>2 1<n<3
of Ty Va2 i M g | VAZENP2) i i ]
oy, preliminary
0.08} .""“--.._..____ 1. + A ]
.“"'O--o-.-.-..........,.., } o
0.06f i + ft 1 + 1
' bopeanann g *.N,.f, 4 79% donfidence level that
0.04F 4] + f 1 4,43 14 renl for 10 < N, < 20}
» +
Ceastsetttedar .N”' 1
0.02F + I e I, i 1

1 1 Ll Loooalisual 1 FETY PP PYTRY PR AP PPTR . U 70 P P S Y PYRTE PRTTY YUY FTRTY RYUTE FYRRY PUTT1 FOUT URY IPRTUR, FUL U PPUTIFTTTY FOTRL POTTY FYPTY FIvY
51015202530354045 5 1015202530354045 5 1015202530354045 5 101520 25 30 3540 45
Niacks Niacks Niracks Niacks

o {2} and v»{4} vs NFYIX all tracks anywhere in FVTX
o w{2,|An| > 2} vs NYIX, one track backward, the other forward
v2{2,|An| > 2} = /v + 02 w{2} =y/vi+02+4
{4} = /vi —o?
@ Hard to understand this result based on fluctuations
@ The eta gap reduces the non-flow, but what else does it do?
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What can AMPT tell us about asymmetric collisions?

=y T T 1]

B 30¢ AMPT d+Au =

z f  NATE

© 250 39GeV.

r 196Gev

201~ -

15 =

10 &

5F \ =

:\ Coo b b b b b i ‘7
01 0 1 2 3

n

o Asymmetric collision systems have:
—asymmetric dNg,/dn
—asymmetric v> vs )

@ The FVTX combined is weighted by dNc/dn towards backward rapidity,
where v, is also higher—the effect is more pronounced at lower energies

@ The FVTX two subevent is equally weighted between forward and back:

B F
Va' v
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What can AMPT tell us about asymmetric collisions?

S - - S - ——
S 30F AMPT d+Au = 0.050 AMPT d+Au E
3 F ~7200GeV ] . ~7200 GeV
] L —62.4GeV C —62.4GeV
251 —39GeV. r 30GeV. 1
F 10.6Gev ] 0.04F 10.6Gev
20 E g 1
7 ] 0.03 E
15— - ]
Y ] 0.02F 4
10— — C ]
5} \ { 0.01; *:
E ~3 r ~]

0 T T T T S T S S S S ST 0 T T T T S T S T S S S S S

3 - - 0 1 2 3 R 1 2 3

n n

o Asymmetric collision systems have:
—asymmetric dNg,/dn
—asymmetric v> vs )

@ The FVTX combined is weighted by dNc/dn towards backward rapidity,
where v, is also higher—the effect is more pronounced at lower energies

@ The FVTX two subevent is equally weighted between forward and back:

B F
vy v
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What can AMPT tell us about asymmetric collisions?

EEREBEERE | - N T ™ e
- AMPT d+Au = Z0.050 AMPT d+Au E
3 ~7200GeV ] . ~7200 GeV
E —624GeV E —624GeV
8 39GeV. r 39GeV. 1
F —196Gev ] 0.04 —196Gev
0.03f .
7/ E 0.02 -
M = 0.01F -
:\ S S T TS S A H\" O:\ S T T T S A i ]
3 2 - 0 1 2 = = - 3

n n

o Asymmetric collision systems have:
—asymmetric dN,/dn
—asymmetric v> vs )

@ The FVTX combined is weighted by dNc/dn towards backward rapidity,
where v, is also higher—the effect is more pronounced at lower energies

@ The FVTX two subevent is equally weighted between forward and back:

B F
vy v
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Understanding v2{2}, {4}, and w»{2,|An| > 2}

200 GeV

62.4 GeV

o2k

0.1
0.08f
0.06F
0.04f

0.021

Ww*

FTaTAL 5., = 62.4 GEVB) T | d+Au Y5, = 30 Gev (©) ]

=V {4} -
A o Enx
preliminary

Coortratrre

— T

+‘ 1 ]
v
dosft .

39 GeV

* Vo{2,18n1>2}

reett
[ ‘e I
ot

Ed+Au s, = 19.6 GeV(d){

19.6 GeV

1<l <3

79% donfidence level that
regl for 10 < N, < 20]

TR A PR A
015 20 25 30 35 40 45

51015 20 25 30 35 40 45
Niacks

tracks

o v2{2,|An| > 2} vs NEYIX—fixed, eq

@ dN.,/dn and v, vs i) alone may explain these results

5101520 25 30 35 40 45
Niracks

ual weighting /vBvS

51015 20 25 30 35 40 45
Niaeks

o w{2} and v»{4} vs N[ ¥ X—weighted average of v& and v}
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Understanding v2{2}, v»{4}, and v»{2,

An| > 2}

200 GeV

62.4 GeV

612
0.1
0.08}

0.06]

0.04

0.02}

G+AU |5, = 200 GeV (a) 1
- +Vo{2}

T

Ww*

=vo{4}

—~—
PH-ENIX
preliminary
[« ]
"""-'mm.-............“
b

0’“,,,nquo N

39 GeV
b d+Au @sw =39 GeV (C) |

* Vo{2,18n1>2}

M

reett
[ .o
ot

19.6 GeV

Ed+Au s, = 19.6 GeV(d){
1<hl<3

 donfidence level that
regl for 10 < N, < 20]

1 1 1 1 1 1 1
01520 25 30 35 40 45
Niacks

51

[ V2{2} and V2{4} Vs Nypacis
° VQ{2, |A’l7| > 2} vs Niacks

e n AR A
51015 20 25 30 35 40 45
Niacks

FVTX

FVIX__fixed, eq

PP Y PP PETY PP FYRTY FPTTS YT Pve] e
5101520 25 30 35 40 45
Niracks

ual weighting /vBvS

@ dN.,/dn and v, vs i) alone may explain these results

FTR FTETI A AAE UL FTTT) T T evd fre
51015 20 25 30 35 40 45
Niaeks

—weighted average of v& and v§

@ There may be additional effects like event plane decorrelation, e.g.
va{2,[An| > 2} = /v V] cos(2(vF - ¥))
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