Longitudinal Double-Spin Asymmetries for Di-jet Production at Intermediate Pseudorapidity in Polarized Proton Proton Collisions at $\sqrt{s} = 200$ GeV

Ting Lin

Ph.D. Indiana University, December, 2017

Advisor: Scott Wissink
Motivation: Constraining ΔG

Deep inelastic scattering measurements have found that the spin of the quarks ($\Delta \Sigma$) account for ~30% of the total spin of the proton, the rest must come from gluon spin (ΔG) or orbital angular momentum (L) of the partons.

RHIC data have been added to the DSSV global analysis. Including the STAR 2009 inclusive jet results show, for the first time, a non-zero gluon polarization in our region of sensitivity.

The low x behavior and shape of $\Delta g(x)$ are still poorly constrained. Recent data will extend our reach in x using forward pion and jet results, and also using higher collision energies.
Exploring Gluon Polarization at RHIC

\[
A_{LL} = \frac{\sigma^{++} - \sigma^{-+}}{\sigma^{++} + \sigma^{-+}} = \frac{\sum_{a,b,c} \Delta f_a \otimes \Delta f_b \otimes d\hat{\sigma}_{f_af_b \rightarrow f_cX} \cdot \hat{a}_{f_cX} \otimes D_{f_c}^h}{\sum_{a,b} f_a \otimes f_b \otimes d\hat{\sigma}_{f_af_b \rightarrow f_cX} \otimes D_{f_c}^h}
\]

- For most RHIC kinematics, gg and qg dominate, making \(A_{LL}\) for jets and hadrons sensitive to gluon polarization.

- At the parton level, helicity correlations are very large in leading-order QCD.
Pushing to Lower X: Dijets at Forward Rapidity

\[x_1 = \frac{1}{\sqrt{s}} \left(p_{T3} e^{\eta_3} + p_{T4} e^{\eta_4} \right) \]

\[x_2 = \frac{1}{\sqrt{s}} \left(p_{T3} e^{-\eta_3} + p_{T4} e^{-\eta_4} \right) \]

\[M = \sqrt{x_1 x_2 s} \]

\[\eta_3 + \eta_4 = \ln \frac{x_1}{x_2} \]

\[|\cos \theta^*| = \tanh \left| \frac{\eta_3 - \eta_4}{2} \right| \]

- Correlation measurements such as di-jets capture more information from the hard scattering and provide a more direct link to the initial kinematics than inclusive probes.

- Leading order expressions show how different jet configurations are sensitive to different kinematic values.

- Di-jets may place better constraints on the functional form of \(\Delta g(x,Q^2) \).

- More forward jets are indicative of more asymmetric collisions which will contain lower x partons.
Forward Rapidity Di-jet Topology

- Adding the Endcap opens up several new di-jet topologies.
- Forward jets probe lower values of gluon momentum fraction while selecting more asymmetric collisions.
- The large imbalance in momentum fractions, coupled with the unpolarized PDF's, suggests that x_2 is dominated by gluons, while x_1 are most often valence quarks.
Data-Simulation Comparison

- Simulation events created using PYTHIA which run through a STAR detector response model based on GEANT 3, and then embedded into Zero-Bias data.

- In general, we see good agreement between Run 9 data and simulation for single jet kinematic quantities.
Challenges and Methods

- TPC efficiency decreases in forward region
- Fewer tracks means reconstructed jets will have lower P_T and jet mass on average

Endcap Region

Machine Learning: Multilayer Perceptron (MLP)

Variables: Endcap jet detector level P_T, detector eta, neutral fraction; Barrel jet P_T

Target: particle level jet P_T

• Barrel and Endcap jets are separately corrected in P_T and mass using similar methods
• Di-Jet invariant masses are calculated using the shifted jet transverse momentum and mass from machine learning
Dijet Double Spin Asymmetry

- Di-jet A_{LL} shown for two Barrel-Endcap topologies
- New results are compared to current DSSV14 and NNPDFpol1.1 expectations
- The forward dijet data will more tightly constrain predictions for gluon spin at lower momentum fraction