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How do we model it?

Today: look at two different approaches

1 Diffusion with fluctuating hydrodynamics (“noise”)1

2 Diffusion with “Monte-Carlo hydrodynamics”2

1J. I. Kapusta and CP, Phys. Rev. C 97, 014906 (2018)
2S. Pratt, J. Kim and CP, arXiv:1712.09298 [nucl-th] (accepted by PRC)



Ordinary vs. Fluctuating Hydrodynamics

















Recap:

Diffusion is an essential aspect of heavy-ion collisions

Hydrodynamic fluctuations offer a natural framework for
modeling diffusion

White noise leads to violations of relativistic causality

Colored noise consistently imposes causality on diffusive
mechanisms

Question: are there other approaches?
Warm-up: why are white noise / ordinary diffusion acausal?
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Diffusion and Random Walks

1-D symmetric random walk: p (N,m) =
2−NN !Θ (N − |m|)(

N+m
2

)
!
(
N−m

2

)
!

m : distance from origin, N : number of timesteps

lim
N→∞

p (N,m) ∼
√

2

πN
exp

(
−m

2

2N

)
;

i.e., solution to continuum diffusion equation:

∂

∂t
p (t, x) = D

∂2

∂x2
p (t, x) with t→ N, x→ m, and D → 1/2

Conclusion: random walk converges to continuum limit as N →∞;
→ but what if N is not large?
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The moral of the story:

1 Continuum limit approximates random walk only in
long-time limit

2 Acausality results from applying continuum limit
outside regime of validity

3 Restore causality by reverting to random walk on
short timescales



Random walks in heavy-ion collisions?

Basic idea: replace density fluctuations with quarks on a random walk

Consider the density correlator between quark flavors a and b:

Cab (~r1, ~r2, t) ≡ 〈δna (~r1, t) δnb (~r2, t)〉
= χab (~r1) δ (~r1 − ~r2)︸ ︷︷ ︸

short−range

−C ′ab (~r1, ~r2, t)︸ ︷︷ ︸
long−range

where χab ≡ 〈QaQb〉 /V and a, b ∈ {u, d, s}
Require local charge conservation: ∂tδna (~r, t) +∇ · δ~ja (~r, t) = 0

=⇒ −∂tC ′ab (~r1, ~r2, t)

= −∇1 ·
〈
δ~ja (~r1, t) δnb (~r2, t)

〉
− ∇2 ·

〈
δna (~r1, t) δ~jb (~r2, t)

〉
+ Sab (~r1, t) δ (~r1 − ~r2)

Sab (~r, t) ≡ −∂µ (uµχab)

δ~ja (~r, t) ≡ −D∇δna (~r, t)



Random walks in heavy-ion collisions?

Basic idea: replace density fluctuations with quarks on a random walk

Consider the density correlator between quark flavors a and b:

Cab (~r1, ~r2, t) ≡ 〈δna (~r1, t) δnb (~r2, t)〉
= χab (~r1) δ (~r1 − ~r2)︸ ︷︷ ︸

short−range

−C ′ab (~r1, ~r2, t)︸ ︷︷ ︸
long−range

where χab ≡ 〈QaQb〉 /V and a, b ∈ {u, d, s}
Require local charge conservation: ∂tδna (~r, t) +∇ · δ~ja (~r, t) = 0

=⇒ −∂tC ′ab (~r1, ~r2, t)

= −∇1 ·
〈
δ~ja (~r1, t) δnb (~r2, t)

〉
− ∇2 ·

〈
δna (~r1, t) δ~jb (~r2, t)

〉
+ Sab (~r1, t) δ (~r1 − ~r2)

Sab (~r, t) ≡ −∂µ (uµχab)

δ~ja (~r, t) ≡ −D∇δna (~r, t)



Random walks in heavy-ion collisions?

Basic idea: replace density fluctuations with quarks on a random walk

Consider the density correlator between quark flavors a and b:

Cab (~r1, ~r2, t) ≡ 〈δna (~r1, t) δnb (~r2, t)〉
= χab (~r1) δ (~r1 − ~r2)︸ ︷︷ ︸

short−range

−C ′ab (~r1, ~r2, t)︸ ︷︷ ︸
long−range

where χab ≡ 〈QaQb〉 /V and a, b ∈ {u, d, s}
Require local charge conservation: ∂tδna (~r, t) +∇ · δ~ja (~r, t) = 0

=⇒ −∂tC ′ab (~r1, ~r2, t)

= −∇1 ·
〈
δ~ja (~r1, t) δnb (~r2, t)

〉
− ∇2 ·

〈
δna (~r1, t) δ~jb (~r2, t)

〉
+ Sab (~r1, t) δ (~r1 − ~r2)

Sab (~r, t) ≡ −∂µ (uµχab)

δ~ja (~r, t) ≡ −D∇δna (~r, t)



Monte-Carlo hydrodynamics

The recipe:

Solve the ordinary (non-fluctuating) hydrodynamic EoMs:

∂µT
µν = 0, 2+1D solution using iEBE-VISHNU3

Use space-time information (uµ(x), T (x), etc.) together with
χab(T ) (from lattice + HRG EoS) to compute Sab(x)→ yields
effective rate of MC quark pair production

Create quark pairs in accordance with Sab(x) and trace their
interactions explicitly → yields MC representation of C ′ab (~r1, ~r2, t)!

Freeze out at Tdec and project all charges onto final-state hadrons
via Cooper-Frye → yields final-state correlations between
measurable particles

3C. Shen, et al. , Comput. Phys. Commun. 199, 61 (2016)
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Where we stand:

Charge balance functions probe diffusion and chemical evolution in
heavy-ion collisions

Several approaches to modeling with hydrodynamics:

- Fluctuating hydrodynamics
- Monte-Carlo hydrodynamics
- Probably others

Essential lessons and challenges:

- Retaining relativistic causality
- Eliminating “trivial” self-correlations

Future/ongoing work:

Incorporate into 3+1D hydrodynamic simulations

Add in hadron cascade

Generalize to finite isospin

Fully differential balance functions



Consequences for the BES program
→ What happens at lower

√
sNN?

- Finite net baryon physics
- Loss of boost invariance

⇒ Need 3+1D hydrodynamics: ∂µT
µν = 0, ∂µJ

µ
Qa

= 0

→ What happens near a critical point?

- Critical slowing down with Hydro+5

- Divergence of correlation length, enhanced fluctuations6

- Cf. also previous talk by Teaney

→ What we can learn:

- Probe T -dependence of χab, Sab
- Test chemical equilibration at early times
- Extract diffusion coefficient for light quarks?
- Additional constraints on presence/absence of critical phenomena

→ Going forward:

- Wider range of hadronic correlations (e.g., BπK and Bπp)
- Fully differential Bhh′ in ∆y, ∆φ, etc.
- Wider rapidity coverage/acceptance

5M. Stephanov and Y. Yin, arXiv:1712.10305 [nucl-th]
6S. Pratt, Phys. Rev. C 96, 044903 (2017)
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Thanks!



Backup slides



Sketch of QCD phase diagram (back)



Steps to solve ∂µJ
µ
Q = 0 (with τQ 6= 0):

∂µJ
µ
Q = 0 =⇒

∂2

∂τ2
(τδñ) +

[
1

τQ
− ∂

∂τ
ln

(
χQTDQ

τ

)]
∂

∂τ
(τδñ) +

DQk
2

τQτ2
(τδñ)

= −iks

[
∂f̃

∂τ
+

(
1

τQ
− 1

τ
− ∂

∂τ
ln

(
χQTDQ

τ

))
f̃

]
.

T is the temperature, DQ is the electric charge diffusion coefficient, σQ
is the electric charge conductivity, and χQ = σQ/DQ is the electric
charge susceptibility. Finally, the quantity k is Fourier-conjugate to the
spatial rapidity ξ; for any quantity X, we define

X(ξ, τ) ≡
∫ ∞
−∞

dk

2π
eikξX̃(k, τ)



Subtracting self-correlations
White noise density correlator:

〈δn (ξ1, τf ) δn (ξ2, τf )〉 =
χQ (τf )Tf

Aτf

[
δ (ξ1 − ξ2)− 1√

πw2
e−(ξ1−ξ2)2/w2

]

First term: “self-correlations”

Represent trivial correlations of a particle with itself
Not measured experimentally

Second term: diffusive correlations

Represent physical, non-trivial correlations of distinct particles
Are actually what we care about

→ Self-correlations need to be subtracted out to compare with
experiment!

→ Not so hard to do for white noise...

→ ...but highly non-trivial for colored noise!



Subtracting self-correlations
Colored noise density self-correlations (vQ � 1):

〈δn (ξ1, τf ) δn (ξ2, τf )〉self ≈
χQ (τf )Tf

Aτf

vQτf
2DQ

exp

(
−
vQτf
DQ

|ξ1 − ξ2|
)

−0.2 −0.1 0.0 0.1 0.2
¢»

0

2

4

6

8

10

12

14

h±
n
(¢
»)
±n
(0
)i
se
lf

v 2Q =3

v 2Q =1

v 2Q =1/3

v 2Q =1/10

“Adiabatic limit” (vQ � 1)
reduces to exponential form on
quasi-static background

“Instantaneous limit” (vQ � 1)
just takes all correlations to
zero

See these references for more detail:

Ling, Springer, and Stephanov [PRC 89, 064901 (2014)]

Kapusta and CP [PRC 97, 014906 (2018)]
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Holographic considerations
Key idea: matching colored noise to holographic dispersion relations
yields estimates for DQ, τQ
Gurtin-Pipkin noise:

∂

∂t
−DQ∇2 + τ1

∂2

∂t2
+ τ2

2

∂3

∂t3
− τ3DQ

∂

∂t
∇2 = 0

⇒ τ2
2ω

3 + iτ1ω
2 −

(
1 + τ3DQk

2
)
ω − iDQk

2 = 0

Holography7,8 yields Kaluza-Klein-type tower of poles in holographic
dispersion relation:

ω(k = 0) = (±n− in)2πT, n = 0, 1, 2, . . .

Match GP noise onto three lowest frequency poles

⇒ DQ = τQ = τ1 =
1

2πT
, τ2 = τ1/

√
2, τ3 = τ1/2

7Nunez and Starinets [PRD 67, 124013 (2003)]
8Policastro, Son and Starinets [JHEP 0209, 043 (2002)]



Hadronic correlations and balance functions

Hadronic correlators:

δNh = nhχ
−1
ab qhaδQb

=⇒ C ′hh′(∆η) =

∫
dηdη′δ

(
∆η −

∣∣η − η′∣∣)
×
〈
(Nh(η)−Nh̄(η))

(
Nh̄′(η

′)−Nh′(η
′)
)〉

=
∑
ab

Khh′;abC
′
ab(∆y),

Khh′;ab = −4nhnh′qhcq
′
h′dχ

−1
ca χ

−1
db

=⇒ Shh′(x) ≡
∑
ab

Khh′;abSab(x), χhh′(x) ≡
∑
ab

Khh′;abχab(x)

Balance functions:

Bhh′(∆y) =
1

〈Nh +Nh̄〉

∫
dydy′δ

(
∆y −

∣∣y − y′∣∣)
×
〈
(Nh(y)−Nh̄(y))

(
Nh̄′(y

′)−Nh′(y
′)
)〉




