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Transits of the critical point: two parameters

tune n/s or beam energy to go through CP
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What if we miss it?

Expanding?
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» How does missing the critical point regulate the critical flcuts?
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» How does the finite expansion rate regulate the critical flucts?
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What should we measure: baryon/entroppy

Cchh = <(5n - (n/5)65)2> variance in n/s:

~~ not baryon number
flucts of 6A = sd(n/s)

» Why? It is a hydro eigenmode, and always maximally divergent:

@) & g
what we want specific heat ising susceptibility

» Which wavelengths diverge? Long wavelengths don't fluctuate:
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ising equilibrium prediction

C"(k) = (6A(k, t)0A(—k, t))

How do the wavelengths of critical flucts compare to micro lengths?
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The expanding box setup

s Se

Ez(l—f—As)E 1 EEEEToauu”

S —

n(t) and s(t) are decreasing in time
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Slightly miss the critical point: constant n/s trajectories

» l|deal hydro conserves n/s

. s
Entropy conservation: u*8,s = —so,u¥ = O;s= -
Q
: n
Baryon conservation:  u*9,n = —nd,u* = Oin= -
Q
» Passing closest to critical point at t = 0 with expansion rate 1/7¢
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detuning

where
An=n-—n. and As=s—s.
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The expanding box setup
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n(t) and s(t) are decreasing in time
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Hydrodynamic equation for C"(k, t) = (A(k, t)A(—k, t))

» Start from dissipative hydro with noise

4+

9uTigea  Tas +€7) =0 -
alr‘(/’.l;éeal +-jc‘jﬁss + 5#) =0 *

» Can derive time evolution equations for the correlators
Ce® = (6e*(k, t)oe(—k,t)) C" = (on"(k,t)on(—k,t)) , etc

» From C"", C€€ derive an equation for C"" = ([6n — (n/s)8s]?)

- Aotk -
atcnn — _ eCff (Cnn _ Cp )
p ~—~
S—— specific heat

heat diffusion coeff

From stochastic hydro find that C"" obeys a relaxation equation
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The maximum wavelength that can be equilibrated:

» Equilibration is a diffusive process

Do X T, = 2
| - Q max
diffusion coef  the total time  the longest wavelength

» Here Dg is the (thermal) diffusion coefficient away from the CP:

e2
Do ~ -2 £, = micro length
To

Solve for the upper cuttoff £,.x on the wavelength of critical modes

-
eo < ekz <K 806_1/2 €= 70
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The critical point at last: trajectories in s — n plane
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The equilibrium fluctuations versus time and wavelength

» Equilibrium is determined by the correlation length: A=2-19
Cp x x(t, k) = _Xising__ Xising o &2
p ’ 1 + (k&)A 1sing
» The correlation length is also universal: eing = lsing e-density

£ x (Aeising)_au a= 1/(1 - Oé)

With the map Aeging x An = t/7q, we find time dependence:

xising(£) o (B2 £(8) = £ ( t )_

o

The rate of change of £(t) is diverging near the CP (t — 0):
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Changing fast! Which modes can keep up?



Relaxation rate of C"”
» Substitute Xsing = Xo (5/150)2*77 into the relaxation equation

_ Aeff
Xogo2 (g/go)4—'r]

relaxation rate [

8, CM = (k€)?[C™ — x(k, t)]

» Define the relaxation rate

Aeff " 1
Xolo? (E(t)/Lo)+m
S—— S———
1/7o goes to 0 at CP

=

» Simplify [ with £(t) = éo(% s

1 t avz
I’z<> where z=4—mn.
To \7Q

At CP, the hydo fluctuations relax infinitely slowly



Tra nSiting the CP Kibb|e—Zurek Sca|eS Berdnikov & Rajagopal; Mukherjee, Venugopalan, Yin

» When is this the changing rate of equilibrium

comparable to the relaxation rate I 7 tﬁ —
- >
2] 1w 5

To

» This timescale is defined to be Kibble-Zurek time tx,
tyy = 61/(31/24—1),7_Q _ 60'26’7'Q
» Kibble-Zurek length is defined to be
Uy = £(tkz) — Zoéfa///(al/z+1) — £0670.19

£ < Loe 019 <& Le 00
e e S~——
micro-length kibble-zurek £y cutoff £max
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Transiting the critical point: the rescaled equation

» Measure t and k in KZ units:

f=t/t, k = ki,

—0.74
tkz = To€ 4,

» CM is of order the x(t) at ti,

Cﬁﬁ = Cﬁﬁ/sz Xkz = Xls(tkz) = Xoe_0'365
» The rescaled equation becomes
=Af K < Xlsin
8_Cnn = - chn _ o — __9
t A e 75

All dimensionful quantities are rescaled into the KZ-units



Solutions for C™ /.,

1.2 L t/tp=—3,-2,-1,-01 —— |

1 equilibrium

Cﬁﬁ/xkz

Before critical point
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Solutions for C™ /.,

1.2 Lt/tgo=—3,-2,-1,-0.1

equilibrium

Before critical point




Solutions for C" /x,

1.2 Ft/tp=—"3,-2,-1,-0.1 —— |

equilibrium
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Solutions for C™ /.,
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Solutions for C™ /.,
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What have we learnt so far?

» We have obtained order-1 plots after rescaling with KZ units
Cﬁﬁ/xkzwl kl, ~ 1 t/tszvl

» The typical critical wavelength is £~

£ < Loe 019 <& Lo 00
~— ~— ~——
micro-length kibble-zurek £ cutoff £max

Numerically these evaluate to with € = 1/5 and 4o = 1.2 fm
12fm <« 1.6fm <« 2.7fm

So the correlation is at most twice the interparticle spacing!
And the fluctuations are 80% larger than baseline:

A 2—
e (&) " 0365 18
X0 4o

C™ has length scale £, and has limited growth of 80%
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Slightly miss the critical point: scalings
» From Ising scaling, £(Aeising, AMising), scales
1-a
§= eo(Aels)_an&(Aels/AMls s )
—_——
scaling var

» Translating to QCD

An t As
AeIsing = Alesing & As
Ne TQ Sc

» The scaling of the Ising EOS implies a scaling in time

t\ l-a
E=14, <—> X fe(t/ter) ter =05 F T
——

scaling func

ter is a new time scale that quantifies the missing of CP
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Detailed scaling regime happens when t ~ ty.,

Asymptotics

XIsing
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Detailed scaling regime is obscured by KZ dynamics if t,, > t.,

XIsing

Asymptotics
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Missing the critical point further limits the flucts

Missing the CP Right through the CP
1.2 + t/tg,=1,3,5 —— - 1.2 + t/ty,=1,3,5 —— -
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Conclusions
» There are two scales tx, and t.,, they compete with each other
ty, = €22571¢ Vs ter = A>T

Numerically with 7 = 10 fm, e = 0.2, A¢ = 0.3
tx> = 6.58 fm > ter = 0.38 fm

So Kibble-Zurek dynamics is more important than detailed scaling

A 10.4
0.005 [ —
€> <O.6>

» C" is a non-flow, and is quite local near CP

2o < Loe 019 < £oe 95 <

1.2fm 1.6fm 2.7fm 10 fm
- — — ——
micro-length £, Kibble-Zurek £, cutoff £max nucleus size
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Do current kurtosis measurements probe the CP?
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Measure P(ng|ny) in Ay bin and characterize with kurtosis.
Reflects stopping not critical point.

| would first fix ng/ny in Ay bin, and then study non-flow correlations
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Measure correlations at fixed ng/s

Long range rapidity flucts

Correlation function

Find the CP in here
at lower energy

Look for short range in m, baryon/entropy correlations (for fixed 71/5)
with momentum scale

h h
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