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Transits of the critical point: two parameters

What if we miss it?

µ

T

Expanding?

tune n/s or beam energy to go through CP

Transits of the critical point: two parameters

How does missing the critical point regulate the critical flucts?

How does the finite expansion rate regulate the critical flucts?

this “missing” parameter is 
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I How does missing the critical point regulate the critical flcuts?

∆s ≡
nc
sc

(
s

n
− sc
nc

)

I How does the finite expansion rate regulate the critical flucts?

ε ≡ τo︸︷︷︸
micro time

× ∂µu
µ

︸ ︷︷ ︸
expansion rate

=
τo
τQ
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What should we measure: baryon/entroppy

Cn̂n̂ ≡
〈

(δn − (n/s)δs)2
〉

︸ ︷︷ ︸
flucts of δn̂ ≡ sδ(n/s)

variance in n/s:

not baryon number

I Why? It is a hydro eigenmode, and always maximally divergent:

〈
(δn − (n/s)δs)2

〉
︸ ︷︷ ︸

what we want

∝ Cp︸︷︷︸
specific heat

∝ χis︸︷︷︸
ising susceptibility

I Which wavelengths diverge? Long wavelengths don’t fluctuate:

Cn̂n̂(k) ≡ 〈δn̂(k, t)δn̂(−k, t)〉 ∝ χis

1 + (kξ)2−η
︸ ︷︷ ︸

ising equilibrium prediction

How do the wavelengths of critical flucts compare to micro lengths?
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The expanding box setup

✏ ⌘ ⌧o

⌧Q
⌘ ⌧o@µuµn

s
= (1 + �s)

nc

sc

The maximum equilibrated wavelength:

The maximum wavelength that can be equilibrated

I Equilibration is a di↵usive process

D0|{z}
di↵usion coef

⇥ ⌧Q|{z}
the total time

= `2max|{z}
the longest wavelength

I Here D0 is the (thermal) di↵usion coe�cient away from the CP:

D0 ⇠
`2o
⌧0

`o ⌘ microscopic length

Find the upper cutto↵ on the wavelength of critical modes

`o|{z}
microlength

⌧ `kz|{z}
typical critical wavelength

⌧ `o✏�1/2| {z }
`max

✏ ⌘ ⌧0
⌧Q
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Di↵usion of �n̂

Cn̂n̂ ⌘ h�n̂(t, k) �n̂(t,�k)i

n(t) and s(t) are decreasing in time
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Slightly miss the critical point: constant n/s trajectories

I Ideal hydro conserves n/s

Entropy conservation: uµ∂µs = −s∂µuµ ⇒ ∂ts = − s

τQ

Baryon conservation: uµ∂µn = −n∂µuµ ⇒ ∂tn = − n

τQ

I Passing closest to critical point at t = 0 with expansion rate 1/τQ

∆n

nc
' − t

τQ

∆s

sc
' ∆s︸︷︷︸

detuning

− t

τQ

where

∆n ≡ n − nc and ∆s ≡ s − sc
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The expanding box setup
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⌧Q
⌘ ⌧o@µuµn
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= (1 + �s)

nc

sc

The maximum equilibrated wavelength:

The maximum wavelength that can be equilibrated

I Equilibration is a di↵usive process

D0|{z}
di↵usion coef

⇥ ⌧Q|{z}
the total time

= `2max|{z}
the longest wavelength

I Here D0 is the (thermal) di↵usion coe�cient away from the CP:

D0 ⇠
`2o
⌧0

`o ⌘ microscopic length

Find the upper cutto↵ on the wavelength of critical modes

`o|{z}
microlength

⌧ `kz|{z}
typical critical wavelength

⌧ `o✏�1/2| {z }
`max

✏ ⌘ ⌧0
⌧Q
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Di↵usion of �n̂

Cn̂n̂ ⌘ h�n̂(t, k) �n̂(t,�k)i

�n(t)

nc
= � t

⌧Q

�s(t)

sc
=�s �

t

⌧Q

n(t) and s(t) are decreasing in time
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Hydrodynamic equation for C n̂n̂(k, t) = 〈n̂(k, t)n̂(−k, t)〉
I Start from dissipative hydro with noise

∂µ(TµνIdeal + Tµνdiss + ξµν) = 0

∂µ(jµIdeal + jµdiss + ξµ) = 0

The maximum equilibrated wavelength:

The maximum wavelength that can be equilibrated

I Equilibration is a di↵usive process

D0|{z}
di↵usion coef

⇥ ⌧Q|{z}
the total time

= `2max|{z}
the longest wavelength

I Here D0 is the (thermal) di↵usion coe�cient away from the CP:

D0 ⇠
`2o
⌧0

`o ⌘ microscopic length

Find the upper cutto↵ on the wavelength of critical modes

`o|{z}
microlength

⌧ `kz|{z}
typical critical wavelength

⌧ `o✏�1/2| {z }
`max

✏ ⌘
⌧0
⌧Q
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Di↵usion of �n̂

I Can derive time evolution equations for the correlators

Cee = 〈δe∗(k, t)δe(−k, t)〉 Cnn = 〈δn∗(k, t)δn(−k, t)〉 , etc

I From Cnn, Cee derive an equation for Cn̂n̂ = 〈[δn − (n/s)δs]2〉

∂tC
n̂n̂ = − λeffk

2

Cp︸ ︷︷ ︸
heat diffusion coeff

(Cn̂n̂ − Cp︸︷︷︸
specific heat

)

From stochastic hydro find that Cn̂n̂ obeys a relaxation equation
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The maximum wavelength that can be equilibrated:The maximum equilibrated wavelength:

The maximum wavelength that can be equilibrated

I Equilibration is a di↵usive process

D0|{z}
di↵usion coef
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Di↵usion of �n̂

I Equilibration is a diffusive process

D0︸︷︷︸
diffusion coef

× τQ︸︷︷︸
the total time

= `2
max︸︷︷︸

the longest wavelength

I Here D0 is the (thermal) diffusion coefficient away from the CP:

D0 ∼
`2
o

τ0
`o ≡ micro length

Solve for the upper cuttoff `max on the wavelength of critical modes

`o︸︷︷︸
microlength

� `kz︸︷︷︸
typical critical wavelength

� `oε
−1/2

︸ ︷︷ ︸
`max

ε ≡ τ0

τQ
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The critical point at last: trajectories in s − n plane

n

s

(nc, sc)
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t=tcr

(c) �t ⇠ ⌧Q�
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s

(a) �t ⇠ ⌧Q (b) �t ⇠ ⌧Q�s

t'0

t=0

(0, 0)

−∆µQCD ←→ ∆TIsing ∆s ←→ ∆MIsing

∆TQCD ←→ ∆HIsing ∆n ←→ ∆eIsing
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The equilibrium fluctuations versus time and wavelength

I Equilibrium is determined by the correlation length: ∆ ≡ 2− η

Cp ∝ χ(t, k) ≡ χising

1 + (kξ)∆
χising ∝ ξ∆

I The correlation length is also universal: eising ≡ Ising e-density

ξ ∝ (∆eising)−aν a ≡ 1/(1− α)

With the map ∆eising ∝ ∆n = t/τQ, we find time dependence:

χising(t) ∝ (ξ(t))∆ ξ(t) = `o

(
t

τQ

)−aν

The rate of change of ξ(t) is diverging near the CP (t → 0):

∂tξ

ξ
= −aν

t︸ ︷︷ ︸
Changing fast! Which modes can keep up?
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Relaxation rate of C n̂n̂

I Substitute χIsing = χo (ξ/`o)2−η into the relaxation equation

∂tC
n̂n̂ = − λeff

χo`o
2(ξ/`o)4−η

︸ ︷︷ ︸
relaxation rate Γ

(kξ)2[Cn̂n̂ − χ(k, t)]

I Define the relaxation rate

Γ ≡ λeff

χo`o
2

︸ ︷︷ ︸
1/τo

× 1

(ξ(t)/`o)4−η
︸ ︷︷ ︸

goes to 0 at CP

I Simplify Γ with ξ(t) = `o( t
τQ

)−aν

Γ =
1

τ0

(
t

τQ

)aνz
where z = 4− η.

At CP, the hydo fluctuations relax infinitely slowly
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Transiting the CP: Kibble-Zurek scales Berdnikov & Rajagopal; Mukherjee, Venugopalan, Yin

I When is this the changing rate of equilibrium

comparable to the relaxation rate Γ ?

∣∣∣∂tξ
ξ

∣∣∣ ∼ 1

t
=

(t/τQ)aνz

τo
= Γ

The maximum equilibrated wavelength:

The maximum wavelength that can be equilibrated

I Equilibration is a di↵usive process

D0|{z}
di↵usion coef

⇥ ⌧Q|{z}
the total time

= `2max|{z}
the longest wavelength

I Here D0 is the (thermal) di↵usion coe�cient away from the CP:

D0 ⇠
`2o
⌧0

`o ⌘ microscopic length

Find the upper cutto↵ on the wavelength of critical modes

`o|{z}
microlength

⌧ `kz|{z}
typical critical wavelength

⌧ `o✏�1/2| {z }
`max

✏ ⌘
⌧0
⌧Q

3 / 3

Di↵usion of �n̂

I This timescale is defined to be Kibble-Zurek time tkz

tkz = ε1/(aνz+1)τQ = ε0.26τQ

I Kibble-Zurek length is defined to be

`kz = ξ(tkz) = `oε
−aν/(aνz+1) = `oε

−0.19

`o︸︷︷︸
micro-length

� `oε
−0.19

︸ ︷︷ ︸
kibble-zurek `kz

� `oε
−0.5

︸ ︷︷ ︸
cutoff `max

12 / 27



Transiting the critical point: the rescaled equation

I Measure t and k in KZ units:

t̄ = t/tkz k̄ = k`kz

tkz = τoε
−0.74 `kz = `oε

−0.19

I Cn̂n̂ is of order the χ(t) at tkz

C̄n̂n̂ = Cn̂n̂/χkz χkz ≡ χIs(tkz) = χoε
−0.365

I The rescaled equation becomes

∂t̄ C̄
n̂n̂ = − k̄

2

χ̄

(
C̄n̂n̂ − χ̄

)
χ̄ =

χ̄Ising

1 + (k̄ ξ̄)2−η

All dimensionful quantities are rescaled into the KZ-units

13 / 27



Solutions for C n̂n̂/χkz
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Solutions for C n̂n̂/χkz
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What have we learnt so far?

I We have obtained order-1 plots after rescaling with KZ units

Cn̂n̂/χkz ∼ 1 klkz ∼ 1 t/tkz ∼ 1

I The typical critical wavelength is `kz

`o︸︷︷︸
micro-length

� `oε
−0.19

︸ ︷︷ ︸
kibble-zurek `kz

� `oε
−0.5

︸ ︷︷ ︸
cutoff `max

Numerically these evaluate to with ε = 1/5 and `0 = 1.2 fm

1.2 fm� 1.6 fm� 2.7 fm

So the correlation is at most twice the interparticle spacing!

And the fluctuations are 80% larger than baseline:

Cn̂n̂

χ0
∼
(
`kz

`0

)2−η
= ε−0.365 ∼ 1.8

Cn̂n̂ has length scale `kz and has limited growth of 80%
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Slightly miss the critical point: scalings

I From Ising scaling, ξ(∆eIsing,∆MIsing), scales

ξ = `o(∆eIs)−aνfξ(∆eIs/∆MIs

1−α
β

︸ ︷︷ ︸
scaling var

)

I Translating to QCD

∆eIsing ↔
∆n

nc
= − t

τQ
∆MIsing ↔

∆s

sc
∼ ∆s

I The scaling of the Ising EOS implies a scaling in time

ξ = `o

(
t

τQ

)−aν
× fξ(t/tcr )︸ ︷︷ ︸

scaling func

tcr ≡ ∆s
1−α
β τQ

tcr is a new time scale that quantifies the missing of CP
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Detailed scaling regime happens when t ∼ tkz

�

t

Detailed 
Scaling 
Regime

t ⇠ tcr

Is
in
g

Asymptotics
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Detailed scaling regime is obscured by KZ dynamics if tkz � tcr

�

t

Detailed 
Scaling 
Regime

t ⇠ tcr

Critical

slowing

down

t ⇠ tkz

Is
in
g

Asymptotics
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Missing the critical point further limits the flucts

Missing the CP
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Conclusions

I There are two scales tkz and tcr , they compete with each other

tkz = ε0.26τQ vs tcr = ∆s
2.72τQ

Numerically with τQ = 10 fm, ε = 0.2, ∆s = 0.3

tkz = 6.58 fm � tcr = 0.38 fm

So Kibble-Zurek dynamics is more important than detailed scaling

ε� 0.005

(
∆s
0.6

)10.4

I Cn̂n̂ is a non-flow, and is quite local near CP

`o � `oε
−0.19 � `oε

−0.5 � R

1.2 fm︸ ︷︷ ︸
micro-length `o

1.6 fm︸ ︷︷ ︸
Kibble-Zurek `kz

2.7 fm︸ ︷︷ ︸
cutoff `max

10 fm︸ ︷︷ ︸
nucleus size
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Do current kurtosis measurements probe the CP?

protons

protons

pions

�y = 1

Measure P (nB|nπ) in ∆y bin and characterize with kurtosis.

Reflects stopping not critical point.

I would first fix nB/nπ in ∆y bin, and then study non-flow correlations
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Measure correlations at fixed nB/s

C(η1, η2) =

〈
dN
dη1

dN
dη2

〉

〈
dN
dη1

〉〈
dN
dη2

〉

The ratio of the correlation function between opposite-charge and same-charge pairs can be approximated
by:

R(⌘1, ⌘2) ⇡ 1 + �+�SRC(⌘1, ⌘2) � �±±SRC(⌘1, ⌘2) (11)

where the two �+�SRC and �±±SRC distributions represent the SRC for the opposite-charge pairs and same-
charge pairs, respectively, and the LRC and single-particle modes cancel out in the ratio, since all relevant
deviations from unity are small. Assuming that the shape of the SRC component factorizes in ⌘� and ⌘+
and the shape along ⌘+ is the same for the opposite-charge and same-charge pairs, the ratio R(⌘1, ⌘2) can
be further simplified as:

R(⌘+, ⌘�) ⇡ 1 + f (⌘+)
⇥
g+�(⌘�) � g±±(⌘�)

⇤
, �+�SRC = f (⌘+)g+�(⌘�), �±±SRC = f (⌘+)g±±(⌘�) (12)

where f (⌘+) describes the shape along ⌘+ and can be calculated via Eq. (10). The functions g+� and g±±

describe the SRC along the ⌘� direction for the two charge combinations, which di↵er in both magnitude
and shape.

In order to estimate the g(⌘�) function for same-charged pairs, the CN(⌘+, ⌘�) distributions for same-
charge pairs are projected into one-dimensional (1-D) ⌘� distributions over a narrow slice |⌘+| < 0.4. The
distributions, denoted by CN(⌘�), are shown in the second column of Fig. 4 for the same-charge pairs
in Pb+Pb and p+Pb collisions. The SRC appears as a narrow peak on top of a distribution that has an
approximately quadratic shape. Therefore a quadratic fit is applied to the data in the region of |⌘�| > 1.5,
and the di↵erence between the data and fit in the |⌘�| < 2 region is taken as the estimated SRC component
or the g(⌘�) function, which is assumed to be zero for |⌘�| > 2. This range (|⌘�| > 1.5) is about twice
the width of the short-range peak in the R(⌘+, ⌘�) distribution along the ⌘� direction (examples are given
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Figure 4: The separation of correlation functions for same-charge pairs (first column) into the SRC (third column)
and LRC (last column) for Pb+Pb (top row) and p+Pb (bottom row) collisions with 200  Nrec

ch < 220. The second
column shows the result of the quadratic fit over the |⌘�| > 1.5 range of the 1-D correlation function projected
over the |⌘+| < 0.4 slice, which is used to estimate the SRC component. The error bars represent the statistical
uncertainties.
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The ratio of the correlation function between opposite-charge and same-charge pairs can be approximated
by:

R(⌘1, ⌘2) ⇡ 1 + �+�SRC(⌘1, ⌘2) � �±±SRC(⌘1, ⌘2) (11)

where the two �+�SRC and �±±SRC distributions represent the SRC for the opposite-charge pairs and same-
charge pairs, respectively, and the LRC and single-particle modes cancel out in the ratio, since all relevant
deviations from unity are small. Assuming that the shape of the SRC component factorizes in ⌘� and ⌘+
and the shape along ⌘+ is the same for the opposite-charge and same-charge pairs, the ratio R(⌘1, ⌘2) can
be further simplified as:

R(⌘+, ⌘�) ⇡ 1 + f (⌘+)
⇥
g+�(⌘�) � g±±(⌘�)

⇤
, �+�SRC = f (⌘+)g+�(⌘�), �±±SRC = f (⌘+)g±±(⌘�) (12)

where f (⌘+) describes the shape along ⌘+ and can be calculated via Eq. (10). The functions g+� and g±±

describe the SRC along the ⌘� direction for the two charge combinations, which di↵er in both magnitude
and shape.

In order to estimate the g(⌘�) function for same-charged pairs, the CN(⌘+, ⌘�) distributions for same-
charge pairs are projected into one-dimensional (1-D) ⌘� distributions over a narrow slice |⌘+| < 0.4. The
distributions, denoted by CN(⌘�), are shown in the second column of Fig. 4 for the same-charge pairs
in Pb+Pb and p+Pb collisions. The SRC appears as a narrow peak on top of a distribution that has an
approximately quadratic shape. Therefore a quadratic fit is applied to the data in the region of |⌘�| > 1.5,
and the di↵erence between the data and fit in the |⌘�| < 2 region is taken as the estimated SRC component
or the g(⌘�) function, which is assumed to be zero for |⌘�| > 2. This range (|⌘�| > 1.5) is about twice
the width of the short-range peak in the R(⌘+, ⌘�) distribution along the ⌘� direction (examples are given
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Figure 4: The separation of correlation functions for same-charge pairs (first column) into the SRC (third column)
and LRC (last column) for Pb+Pb (top row) and p+Pb (bottom row) collisions with 200  Nrec

ch < 220. The second
column shows the result of the quadratic fit over the |⌘�| > 1.5 range of the 1-D correlation function projected
over the |⌘+| < 0.4 slice, which is used to estimate the SRC component. The error bars represent the statistical
uncertainties.
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Figure 4: The separation of correlation functions for same-charge pairs (first column) into the SRC (third column)
and LRC (last column) for Pb+Pb (top row) and p+Pb (bottom row) collisions with 200  Nrec

ch < 220. The second
column shows the result of the quadratic fit over the |⌘�| > 1.5 range of the 1-D correlation function projected
over the |⌘+| < 0.4 slice, which is used to estimate the SRC component. The error bars represent the statistical
uncertainties.
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Correlation function Short Range = "Non-flow" Long range rapidity flucts

Find the CP in here
at lower energy

Look for short range in η, baryon/entropy correlations (for fixed n̄/s̄)

with momentum scale

∆p ∼ 50 MeV ∼ ~
`kz
∼ ~

2 fm
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