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Quark elastic scattering as a source of high-transverse-momentum mesons*

R. D. Field and R. P. Feynman
California Institute of Technology, Pasadena, California 91125
(Received 20 October 1976)

We investigate the consequences of the assumption that the high-transverse-momentum parti-
cles seen in hadron-hadron collisions are produced by a single, hard, large-angle elastic scat-
tering of quarks, one from the target and one from the beam. The fast outgoing quarks are as-
sumed to fragment into a cascade jet of hadrons. The distributions of quarks in the incoming
hadrons are determined from lepton-hadron inelastic scattering data, together with certain
theoretical constraints such as sum rules, etc. The manner in which quarks cascade into had-
rons is determined from particle distributions seen in lepton-hadron and lepton-lepton colli-
sions supplemented by theoretical arguments. The quark elastic scattering cross section is
parametrized in a purely phenomenological way and the choice d6/df=2.3x108/(=5£3) ub GeV?®
gives a reasonable fit to all the data for hadron+hadron —meson +anything for p,22 GeV/c.
Many predictions do not depend sensitively on the exact form for d6/d{ and therefore test
our basic assumption. The data examined include single-particle production in pp collisions
at various energies and angles. Particle ratios (r*,77,K* K™, and 7) are predicted and dis-

Improve parton distribution
functions using data from flavor-
sensitive experiments like SIDIS

cussed. In addition, the ratio of production of 7”s by beams of 7* and protons on a proton
target is explained. With this model we have found no serious inconsistency with data, but
several predictions for charge ratios and beam ratios at other angles are presented that

have yet to be tested experimentally.
1. INTRODUCTION

When hadrons collide at high energy most of the
energy appears in many particles moving in the
directions of the original momenta with only a
small transverse momentum {p, ) ~0.35 GeV.
There are, however, a few hadrons of unusually
high transverse momenta. When this was first
discovered it was hoped that they arose from an
intimate hard collision between the constituent
partons of the colliding hadrons. Their study could
therefore lead to a deeper understanding of the
short-distance behavior of the fundamental strong
forces. However, this plan has so far been frus-
trated by two features. First, the expectation
from all field theories (and there is no other con-
sistent relativistic formulation of quantum theory)
suggests that the cross sections with all momenta
scaled in the same proportion should fall off with
p. nearly as p, ~* (with possible logarithmic mod-
ifications), whereas experimentally the behavior
is closer to p, 5,

Because of this, many theorists have suggested
that we are not yet observing the fundamental in-
teraction between partons, but some other more
complex mechanism—and only at much larger en-
ergies will the expected p, ~* appear (after the
other mechanism, falling as p, ~®, has fallen away).
There is no consensus on what this other me-
chanism, which is operating in the present experi-
mental region, might be; very many theories are
available,

The second frustrating feature is that the ob-

corvaed Iarocoe-s Dartielee nend nont he nartielaa

which are originally directly driven out, but may
be the result of a disintegration or fragmentation
of these originals. Interpretation of the data then
needs considerable theoretical analysis requiring
many assumptions of mechanism and decay func-
tions. This makes it difficult, in any comparison
to experiment, to judge from a fit whether the
mechanism proposed by the theory is verified, or
merely that the many possible unknown functions
have been cleverly adjusted to fit.

We have no easy solution to these difficulties.
In fact, after trying phenomenologically to test
and distinguish some of the various models we
have become unusually sensitive to these frustra-
tions. We feel the only way out is a long hard job.
One must take some one model and test it against
everything experimentally available at the same
time. Then if it succeeds, or can be adjusted to
succeed so far, make as definite predictions as
possible for experiments soon to come—indicating
those which, if not fulfilled, will prove the model
wrong. Only in that way can models be eliminated
and progress made. In this paper we shall begin
this work starting with one particular model.

The model we shall choose is not a popular one,
so that we will not duplicate too much of the work
of others who are similarly analyzing various
models (e.g., constituent-interchange model, mul-
tiperipheral-type models, etc.). We shall assume
that the high-p, particles arise from direct hard
collisions between constituent quarks in the in-~
coming particles, and in a fundamental quark,
+quark, —-quark, +quark, elastic collision the

Nnrimoryv nnfonino hiohaets nartieclae avre mitarlkro
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(in fact, of the same flavor as the quarks that
came in), which fragment or cascade down into
several hadrons.! This is illustrated in Fig. 1.
We disregard the theoretical argument that this
elastic cross section [which we write as dg/
df(s,%), where § and f are the s, ¢ invariants for
the quark collision] must vary as §~2f(£/8) and,
instead, leave it as an unknown function to be de-
termined empirically by the data. It will vary
more like §~¥f(/§) with N about 4.

We shall need the distributions G, _,,(x) of quarks
q in the initial hadrons; for protons and neutrons
this is given to a large extent by deep-inelastic
ep (or up) scattering data. Also, we shall need to
know what the chances, D!(z), are that a quark ¢
going out at large momentum disintegrates into
various kinds of hadrons, 7, with a fraction z of

h
et (%/
q

(b) <

Gpsmg(Xa) DA(zo)
A—>— é—\/

x v/

a’\ Cq
N

(c) @ 99 (G+bwc+d)

P N dt
/ LY

% d\

v N

B
Gpap (xp) ‘

FIG. 1. (a) Quark-parton-model mechanism for single-
hadron production in lepton-hadron processes. (b) Quark-
parton-model mechanism for single-hadron production
in e*e” annihilation. (c) Illustration of the common un-
derlying structure of constituent or “hard-scattering”
models for hadron-hadron collisions. The large-trans-
verse-momentum reaction A +B —h +X is assumed to
occur as a result of a single large-angle scattering of
constituents a +b —c +d, followed in general by the de-
cay or fragmentation of ¢ into the observed particle %.
We further hypothesize that the dominant basic sub~

the original momentum of the quark. This is given,
in principle, by the hadrons produced by the re-
coiling quarks in deep-inelastic neutrino proton
scattering. Unfortunately, in both cases the data
are incomplete and must be supplemented by the-
oretical arguments that require much discussion.
This first paper deals primarily with these func-
tions G, _,,(x) and D!(z) and with the behavior of
outgoing particle and incoming beam ratios for
large-p, single-particle production. We examine
various forms for dé/df and make predictions that
are insensitive to its detailed form. Since the be-
havior of G, ,,(x) and D!(z) is inferred from lepton-
hadron and lepton-lepton processes, much of this
first paper can be viewed as an attempt to pre-
dict properties of hadron-hadron collisions from
information gained studying lepton-initiated re-
actions. A subsequent paper will investigate ex-
perimental quantities that depend more strongly

on the precise form of dé/df (e.g., two-particle

_correlation data in large-p, hadron collisions).

Then it will be necessary to include the effects of
the transverse momentum spread of the quarks
within the hadrons and of the hadrons that frag-
ment from quarks. These effects have little in-
fluence on the results of the present paper and we
have omitted them in our calculations reported
here.

We are fully aware that all partons are not
quarks, that half the momentum of the proton is
something else (gluons?). And there is no good
reason to exclude the possibility that some of the
high-p, particles could result from gluon inter-
actions. We are also aware that there is no good
reason for the quark-quark cross section to vary
as §”%. But we must start somewhere and we have
chosen to start here. Let us see what experiments
might exclude our specific choice, and indicate
the presence of gluons, or some different model
entirely.

Before we begin, however, we must say ahead
of time in what region we expect our theory to hold.
We must be careful, because we do not wish to be
embarrassed later by appearing to think up an ex-
cuse as to why something does not fit. We expect
to allow, generally, any data outside the low-p
main collision (for example, outside the low-p,
“pionization” region) with enough momentum that
our ubiquitous approximations of relativistic quarks
and scaling hold. We take this to mean simply the
condition p, 22 GeV/c, although we can guess that
down to 1.5 GeV/c it may still work fairly well.
There is one situation where this may be insuf-
ficient. If we are calculating something of par-
ticularly low probability that is easy to find in

IR I Y Y P NS T D D T
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Can we repeat the same analysis for another semi-inclusive
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What distributions are we actually looking at?
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VWhat distributions are we actually looking at!

0.8

0.7

0.6

Dominated by u quark

7 do K 1o Vs=200 GeV l :

Small uncertainties associated to the PDFs



0.8

0.6

0.4

0.2

What distributions are we actually looking at?

q oKX ——
DR KEX o —
L sb oKX

u—>K'X —-—

do, ,k+x/do




0.8

0.6

0.4

0.2

VWhat distributions are we actually looking at!

q oKX ——
DR KEX o —
L sb oKX

u—>K'X —-—

do, ,k+x/do

"Dominated by u
quark
fragmentation



What distributions are we actually looking at?

0.8

0.6

0.4

0.2

q KX o
g KX
s >K'X

ub KX —-—

do, ,xx/do

Great to probe D; (z) & D, (2)




What distributions are we actually looking at?
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What distributions are we actually looking at?
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SUMMART

» The combined extraction of PDFs & FFs :
» strong constrains on the strange sea of the proton
o [he method proved to be robust

» RHIC data for charged kaon production expected to provide an important constrain on the
strange FFs:

New insights on the
* Proton’s strange content
» Charge (& isospin) symmetry breaking

« Nuclear effects on PDFs & FFs



.
=
N
Z
<
20
e




