Q"

Stony Brook
University

A New Correlator, Ry, (AS), to Detect and Characterize
the Chiral Magnetic Effect

Niseem Magdy
Stony Brook University

niseemm(@gmail.com



\/

*¢ Introduction
v" Chiral Magnetic Effect (CME)

Reaction
plane

TZAN

o[/

Ei‘

X (defines ¥g)
D.E. Kharzeev

Prog.Part.Nucl.Phys. 75 (2014) 133-151

» In non-central collisions a
strong magnetic field is
created L to Wrp




\/

*¢ Introduction
v" Chiral Magnetic Effect (CME)

—

J,=0B

Q

Reaction
plane 05 — CA,L% Kharzeev
(‘I’R)\ hep-ph/0406125

C,=0%/(4r)

— — —
By, i Y AB L
g ) 544D L.
@ @) 3
X (defines ¥, . o ”
D.E. Kharzeev ( » 3 Pl S, 4p g ﬁ (») 7))
Prog.Part.Nucl.Phys. 75 (2014) 133-151 D ® B - o\
p O
» In non-central collisions a QP50 ps #0 s #0
strong magnetic field is D.E. Kharzeev etal,

Prog.Part.Nucl.Phys. 88 (2016) 1-28

created L to Wrp
» Magnetic field acts on the chiral fermions
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along the magnetic field which leads to a
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CME-driven charge separation leads to a dipole term in the azimuthal
distribution of the produced charged hadrons:
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x 1 + 2 as"sin(¢) + - ash o s B

Can we identify & characterize this dipole moment?

The Gamma correlator and its variants, have been used
extensively for experimental measurements.
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» The Gamma Correlator’s response is similar for signal and background
v Background-driven correlations complicate CME-driven signal
extraction?
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» The Gamma Correlator’s response is similar for signal and background
v Background-driven correlations complicate CME-driven signal
extraction?
» Background can account for a part, or all of the observed charge separation
signal?
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» We need better control over signal and background
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B and ¥, ~ uncorrelated
B and W5 ~ uncorrelated

v’ Signal free v Signal free
v' Compare with ¥, measurements

¢ Excellent bench mark




¢ The New Correlator
N. Magdy et al. arXiv: 1710.01717

» The correlator 1s constructed for a given event plane W, via a
ratio of two correlation functions

Cy_ (AS
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separation along the B-field Cy (AS)
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yT | M separation perpendicular to the
) = B-field (only background)
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» The correlator 1s constructed for a given event plane W, via a
ratio of two correlation functions

Cy_ (AS
C\Pm (AS) quantiﬁes Chal'ge Rlpm (AS) — Li’m ( )
separation along the B-field Cy (AS)
B
LorB 4
Reaction ﬁ )
Plane W, ™ . A
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= =4 Ci,, (AS) quantifies charge
yT | separation perpendicular to the
p p——— B-field (only background)

The Ry,,,(AS) correlator measures the magnitude of charge separation
parallel to the B-field, relative to that for charge separation
perpendicular to the B-field

Note that both Cy,(AS) and le,g (AS) are insensitive to CME-driven
charge separation (only background)
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» Charge separation magnitude is reflected in the width of the Ry, (AS)

distribution which 1s affected by:
v" Number fluctuations
v" EP-resolution

Subdivide the event multiplicity into different percentage
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» Charge separation magnitude is reflected in the width of the Ry, (AS)

distribution which 1s affected by:
v" Number fluctuations
v" EP-resolution

Subdivide the event multiplicity into different percentage
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> We can account for both number fluctuations and EP-resolution effect
on the width of the Ry, (AS)
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» Charge separation magnitude is reflected in the width of the Ry, (AS)

distribution which 1s affected by:
v" Number fluctuations
v" EP-resolution

Subdivide the event multiplicity into different percentage
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> Validation of the expected similarity between the patterns for Ry, (AS)
and Ry, (AS) for background-driven charge separation
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“* Ry,,(AS) In Background Models
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> Validation of the expected similarity between the patterns for Ry, (AS)
and Ry, (AS) for background-driven charge separation

> Suppressing the resonance contributions leads to a flat shape for Ry, (AS)
and Ry (AS) for background-driven charge separation
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» The events-shape selections validation the expected resonance

contributions to the Ry, (AS)




% Ry,,,(AS) Response

N. Magdy et al. arXiv: 1710.01717
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“* Ry, (AS) vs Centrality
AVFD (bkg&CME)

N. Magdy et al. arXiv: 1710.01717
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> Validation of the expected centrality dependence of Ry, (AS) to CME-driven
charge separation input in AVFD events.
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Ry, (AS) Measurements at RHIC
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Ry, (AS) Measurements at RHIC

v Event plane and Presented at Workshop on Chirality 2018
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* Ry (AS) Measurements at RHIC

v R‘Pm (AS ) Vs centrahty Presented at Workshop on Chirality 2018
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Ry, (AS) Measurements at RHIC
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“* Ry,,(AS) In Isobaric Collisions

N. Magdy et al. arXiv: 1803.02416
» AVFD predictions for the Ru+Ru and Zr+Zr isobaric systems
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“* Ry,,(AS) In Isobaric Collisions

N. Magdy et al. arXiv: 1803.02416
» AVFD predictions for the Ru+Ru and Zr+Zr isobaric systems
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“* Ry,,(AS) In Isobaric Collisions

N. Magdy et al. arXiv: 1803.02416

» AVFD predictions for the Ru+Ru and Zr+Zr isobaric systems
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“* Ry,,(AS) In Isobaric Collisions

C‘I’z + k(Ru+Ru / Zr+Zr)

N. Magdy et al. arXiv: 1803.02416

» AVFD predictions for the Ru+Ru and Zr+Zr isobaric systems
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> Isobaric ratios of the correlation function can be used to characterize

both signal and background
v" Crucial for isobar run!
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% Conclusion

The charge separation correlators Ry_ (AS), are investigated in different
models and for STAR data.
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