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RECOMMENDATION:
We recommend a high-energy high-luminosity 
polarized EIC as the highest priority for new facility 
construction following the completion of FRIB.

Initiatives:
Theory 
Detector & Accelerator R&D     

http://science.energy.gov/np/reports

Detector R&D money ~1.3M/yr since 2011
Increase anticipated soon after project officially begins

Since FY 2017
EIC Accelerator R&D already assigned $7M/yr
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World’s first
Polarized electron-proton/light ion 
and electron-Nucleus collider

Both designs use DOE’s significant 
investments in infrastructure

For e-A collisions at the EIC:
ü Wide range in nuclei
ü Luminosity per nucleon same as e-p
ü Variable center of mass energy 

The Electron Ion Collider
For e-N collisions at the EIC:
ü Polarized beams: e, p, d/3He
ü e beam 5-10(20) GeV
ü Luminosity Lep ~ 1033-34 cm-2sec-1

100-1000 times HERA
ü 20-100 (140) GeV Variable CoM

1212.1701.v3
A. Accardi et al 
Eur. Phy. J.  A, 52 9(2016)

JLEIC Collaboration
JLEIC Pre-CDR
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eRHIC Design Group
eRHIC pre-CDR

2018



The National Academy Reviewed the EIC
2017-2018
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Statement of Task from the Office of Science (DOE/NSF) to the
National Academy of Science, Engineering & Medicine (NAS)
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Statement of Task from the Office of Science (DOE/NSF) to the
National Academy of Science, Engineering & Medicine (NAS)
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EIC Science Endorsed Unanimously by the NAS
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Developed by US QCD community
over two decades

Developed by NAS with
broad science perspective

EIC science:
compelling, fundamental

and timely

A consensus report
July 26, 2018



NAS Study endorses machine parameters suggested by the  2012 White Paper and 

2015 NSAC Long Range Plan
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Consensus Study Report on  the US based 
Electron Ion Collider

Summary:
The science questions that an EIC will answer
are central to completing an understanding of
atoms as well as being integral to the agenda of
nuclear physics today. In addition, the
development of an EIC would advance
accelerator science and technology in nuclear
science; it would as well benefit other fields of
accelerator based science and society, from
medicine through materials science to
elementary particle physics
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The Compelling And Fundamental 
Science Of EIC
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Current polarized DIS data:
CERN DESY JLab SLAC

Current polarized BNL-RHIC pp data:
PHENIX π0 STAR 1-jet
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EIC: Kinematic reach & properties
For e-N collisions at the EIC:
ü Polarized beams: e, p, d/3He
ü Variable center of mass energy
ü Wide Q2 range à evolution
ü Wide x range à spanning valence to low-x physics

For e-A collisions at the EIC:
ü Wide range in nuclei

ü Lum. per nucleon same as e-p
ü Variable center of mass energy 

ü Wide x range (evolution)
ü Wide x region (reach high gluon densities)
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QCD Landscape to be explored by EIC
QCD at high resolution (Q2) —weakly correlated quarks and gluons are well-described

Strong QCD dynamics creates many-body correlations 
between quarks and gluons
à hadron structure emerges

EIC will systematically explore correlations in this 
region.

An exciting opportunity: Observation by EIC of a new 
regime in QCD of weakly coupled high density matterar
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A new facility is needed to investigate, with precision, the dynamics of gluons & sea 
quarks and their role in the structure of visible matter

How are the sea quarks and gluons, and their spins, distributed in 
space and momentum inside the nucleon? 
How do the nucleon properties emerge from them and their 
interactions?

How do color-charged quarks and gluons, and colorless jets, interact with a 
nuclear medium?
How do the confined hadronic states emerge from these quarks and gluons? 
How do the quark-gluon interactions create nuclear binding?QS: Matter of Definition and Frame (II)

7

Infinite Momentum Frame:
• BFKL (linear QCD): splitting functions ⇒ gluon density grows
• BK (non-linear): recombination of gluons ⇒ gluon density tamed

BFKL: BK adds:

αs << 1αs ∼ 1 ΛQCD

know how to 
do physics here?

m
ax

. d
en

si
ty

Qs kT
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 φ

(x
, k

T2 )

• At Qs:   gluon emission balanced by recombination

Unintegrated gluon distribution
depends on kT and x:
the majority of gluons have 
transverse momentum kT ~ QS
(common definition)

QS: Matter of Definition and Frame (II)
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• At Qs:   gluon emission balanced by recombination

Unintegrated gluon distribution
depends on kT and x:
the majority of gluons have 
transverse momentum kT ~ QS
(common definition)

gluon 
emission

gluon 
recombination

?

How does a dense nuclear environment affect the quarks and 
gluons, their correlations, and their interactions?
What happens to the gluon density in nuclei? Does it saturate at 
high energy, giving rise to a gluonic matter with universal 
properties in all nuclei, even the proton?

=

June 7, 2019 EIC at RHIC-AGS Meeting 2019 13



DS/2 = Quark contribution to Proton Spin
LQ   = Quark Orbital Ang. Mom
Dg = Gluon contribution to Proton Spin
LG   = Gluon Orbital Ang. Mom 

Understanding of Nucleon Spin

1
2

=

1
2
�⌃ + LQ

�
+ [�g + LG]

Precision in DS and Dg è A clear idea
Of the magnitude of LQ+LG
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Figure 2.8: Left: Uncertainty bands on helicity parton distributions, in the first DSSV anal-
ysis [60, 61] (light bands) and with EIC data (darker bands), using projected inclusive and
semi-inclusive EIC data sets (see text). Note that for this analysis only data with x � 10�3

were used, for which Q
2
� 2.5 GeV2. Right: �2 profiles for the truncated x integral of �g over

the region 10�4
 x  10�2 with and without including the generated EIC pseudo-data in the

fit. Results are shown for three di↵erent EIC center-of-mass energies.

The right part of the figure shows
the �

2 profile of the truncated first mo-
ment of the gluon helicity distribution,R 0.01
0.0001 dx�g(x,Q2), at Q2 = 10 GeV2, again
compared to the “DSSV+” estimate. Also
here, the impact of EIC data is evident. One
also observes the importance of high ener-
gies. For instance, running at the highest
energy clearly constrains the small-x region
much better. Overall, the EIC data greatly
improves the �

2 profile, even more so when
all data in Fig. 2.6 are included.

The light shaded area in Fig. 2.9 displays
the present accuracies of the integrals of �⌃
and �g over 0.001  x  1, along with their
correlations. The inner areas represent the
improvement to be obtained from the EIC,
based on the global analysis studies with
pseudo-data described above. We stress that
similar relative improvements would occur
for any other benchmark set of polarized par-
ton distribution functions, such as the latest
DSSV [62] set. The results shown in the fig-
ure clearly highlight the power of an EIC in
mapping out nucleon helicity structure. The

anticipated kinematic range and precision of
EIC data will give unprecedented insight into
the spin contributions Sq and Sg. Their mea-
surements, by subtracting from the total pro-
ton spin 1/2, will provide stringent and inde-
pendent constraints on the total contribution
of quark and gluon orbital momenta, Lq+Lg.

Besides polarized proton beams, the
EIC design envisions beams of polarized
deuterons or helium-3. The neutron’s
g1(x,Q2) can thus be determined, potentially
with a precision that is comparable to the
data on g1(x,Q2) of the proton. The di↵er-
ence of the moments of proton and neutron
g1(x,Q2) allows a test of the fundamental
sum rule by Bjorken [75]. The data from
polarized fixed target experiments have veri-
fied the sum rule to a precision of about 10%
of its value. The extended kinematic range
and improved precision of EIC data allow for
more stringent tests of this sum rule, as well
as its corrections, to an accuracy that is cur-
rently anticipated to be driven mostly by ad-
vances in hadron beam polarimetry (cf. Sec-
tion 6.2.5).

29



3-Dimensional Imaging Quarks and Gluons

W(x,bT,kT)
∫	d2kT

f(x,bT)f(x,kT)

∫d2bT

bT

kT
xp

Spin-dependent 3D momentum space 
images from semi-inclusive scattering
à TMDs

Spin-dependent 2D coordinate space 
(transverse) + 1D (longitudinal momentum) 
images from exclusive scattering (Deeply 
Virtual Compton Scattering and Deeply 
Virtual Vector Meson production)
à GPDs

Momentum
space

Coordinate
space

Position and momentum à Orbital motion of quarks and gluons

Wigner functions W(x,bT,kT)
offer unprecedented insight into confinement and chiral symmetry breaking.
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2+1 D partonic image of the proton with the EIC
Spin-dependent 3D momentum space images from 
semi-inclusive scattering

Spin-dependent 2D coordinate space (transverse) +
1D (longitudinal momentum) images from exclusive 
scattering

Transverse Position Distributions

sea-quarks
unpolarized                polarized

Transverse Momentum Distributions
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2+1 D partonic image of the proton with the EIC
Spin-dependent 3D momentum space images from 
semi-inclusive scattering

Spin-dependent 2D coordinate space (transverse) +
1D (longitudinal momentum) images from exclusive 
scattering
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Study the evolution of momentum and position distributions over wide range in  x



⌫ =
Q2

2mx

Need the collider energy of EIC and its control on parton kinematics

Control of ν by selecting kinematics;
Also under control the nuclear size.

(colored) Quark passing through cold QCD matter
emerges as color-neutral hadron è Clues to color-

confinement?

Unprecedented ν, the virtual photon energy 
range @ EIC : precision &  control

Emergence of Hadrons from Partons
Nucleus as a Femtometer sized filter  

Identify p vs. D0 (charm) mesons in e-A collisions: 
Understand energy loss of light vs. heavy quarks 

traversing the cold nuclear matter: 
Connect to energy loss in Hot QCD

Energy loss by light vs. heavy 
quarks:

Pions (model-I)

Pions (model-II)
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Advantage of the nucleus over proton
June 7, 2019 EIC at RHIC-AGS Meeting 2019 19
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Figure 6: Accessible values of the saturation scale Q2
s at an EIC in e+A collisions assuming two di↵erent maximal

center-of-mass energies. The reach in Q2
s for e+p collisions at HERA is shown for comparison.

pared to
p
smax = 40GeV. The di↵erence in Q2

s

may appear relatively mild but we will demon-
strate in the following that this di↵erence is su�-
cient to generate a dramatic change in DIS observ-
ables with increased center-of-mass energy. This
is analogous to the message from Fig. 5 where we
clearly observe the dramatic e↵ect of jet quench-
ing once

p
sNN is increased from 39 GeV to 62.4

GeV and beyond.

To compute observables in DIS events at high
energy, it is advantageous to study the scattering
process in the rest frame of the target proton or
nucleus. In this frame, the scattering process has
two stages. The virtual photon first splits into
a quark-antiquark pair (the color dipole), which
subsequently interacts with the target. This is il-
lustrated in Fig. 7. Another simplification in the
high energy limit is that the dipole does not change
its size r? (transverse distance between the quark
and antiquark) over the course of the interaction
with the target.

Multiple interactions of the dipole with the tar-
get become important when the dipole size is of the
order |~r?| ⇠ 1/Qs. In this regime, the imaginary
part of the dipole forward scattering amplitude
N(~r?,~b?, x), where ~b? is the impact parameter,
takes on a characteristic exponentiated form [16]:

N = 1� exp

 
�
r2?Q

2
s(x,~b?)

4
ln

1

r?⇤

!
, (1)

where ⇤ is a soft QCD scale.

At high energies, this dipole scattering ampli-
tude enters all relevant observables such as the to-
tal and di↵ractive cross-sections. It is thus highly
relevant how much it can vary given a certain col-
lision energy. If a higher collision energy can pro-
vide access to a significantly wider range of values
for the dipole amplitude, in particular at small x,
it would allow for a more robust test of the satu-
ration picture.

Figure 7: The forward scattering amplitude for DIS
on a nuclear target. The virtual photon splits into a
qq̄ pair of fixed size r?, which then interacts with the
target at impact parameter b?.

To study the e↵ect of a varying reach in
Q2, one may, to good approximation, replace r?
in (1) by the typical transverse resolution scale
2/Q to obtain the simpler expression N ⇠ 1 �
exp

�
�Q2

s/Q
2
 
. The appearance of both Q2

s and
Q2 in the exponential is crucial. Its e↵ect is
demonstrated in Fig. 8, where the dipole ampli-

11

Key Topic in eA: Gluon Saturation (I)

6

In QCD, the proton is made up 
of quanta that fluctuate in and 
out of existence 
• Boosted proton: 
‣ Fluctuations time dilated on 

strong interaction time 
scales  

‣ Long lived gluons can 
radiate further small x 
gluons! 

‣ Explosion of gluon density 
! violates unitarity
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9

pQCD  
evolution  
equation

New Approach: Non-Linear Evolution 
• New evolution equations at  low-x & low to moderate Q2 

• Saturation of gluon densities characterized by scale Qs(x) 
• Wave function is Color Glass Condensate

Accessible range of saturation scale 
Qs 2 at the EIC with e+A collisions.

arXiv:1708.01527

Reaching the Saturation Region

8

HERA (ep):
Despite high energy range:
• F2, Gp(x, Q2) outside the 

saturation regime 
• Need also Q2 lever arm! 
• Only way in ep is to 

increase &s
• Would require an ep 

collider at &s ~ 1-2 TeV 

Different approach (eA):
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L ~ (2mN x)-1 > 2 RA ~ A1/3

Probe interacts coherently 
with all nucleons
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Diffraction : Optics and high energy physics
Light with wavelength l obstructed by an opaque disk of radius R suffers diffraction:
k à wave number

d
σ

/d
t 

|t|

Coherent/Elastic

Incoherent/Breakup

t1 t2 t3 t4

Light
Intensity

θ2 θ3 θ4θ10 Angle

Figure 3.13: Left panel: The di�ractive pattern of light on a circular obstacle in wave optics.
Right panel: The di�ractive cross-section in high energy scattering. The elastic cross-section in
the right panel is analogous to the di�ractive pattern in the left panel if we identify |t| ⇥ k2 �2.

�i � 1/(k R) for small-angle di�raction.
Elastic scattering in QCD has a similar

structure. Imagine a hadron (a projectile)
scattering on a target nucleus. If the scat-
tering is elastic, both the hadron and the nu-
cleus will be intact after the collision. The
elastic process is described by the di�eren-
tial scattering cross-section d⇥el/dt with the
Mandelstam variable t describing the mo-
mentum transfer between the target and the
projectile. A typical d⇥el/dt is sketched by
the solid line in the right panel of Fig. 3.13
as a function of t. Identifying the projectile
hadron with the incident plane wave in the
wave optics example, the target nucleus with
the obstacle, and writing |t| ⇥ k2 �2 valid for
small angles, we can see that the two pan-
els of Fig. 3.13 exhibit analogous di�ractive
patterns and, therefore, describe very simi-
lar physics! The minima (and maxima) of
the cross-section d⇥el/dt in the right panel
of Fig. 3.13 are also related to the inverse
size of the target squared, |ti| � 1/R2. This
is exactly the same principle as employed for
spatial imaging of the nucleons as described
in Sec. 2.3.

The essential di�erence between QCD
and wave optics is summarized by two facts:

(i) The proton/nuclear target is not always
an opaque “black disk” obstacle of geomet-
ric optics. A smaller projectile, which in-
teracts more weakly due to color-screening
and asymptotic freedom, is likely to pro-
duce a di�erent di�ractive pattern from the
larger, more strongly interacting, projectile.
(ii) The scattering in QCD does not have to
be completely elastic: the projectile or tar-
get may break up. The event is still called
di�ractive if there is a rapidity gap, as de-
scribed in the Sidebar on page 61. The cross-
section for the target breakup (leaving the
projectile intact) is plotted by the dotted line
in the right panel of Fig. 3.13, and does not
exhibit the di�ractive minima and maxima.

The property (i) is very important for
di�raction in DIS in relation to satura-
tion/CGC physics. As we have seen above,
owing to the uncertainty principle, at higher
Q2, the virtual photon probes shorter trans-
verse distances, and is less sensitive to sat-
uration e�ects. Conversely, the virtual pho-
ton in DIS with the lower Q2 is likely to be
more sensitive to saturation physics. Due to
the presence of a rapidity gap, the di�rac-
tive cross-section can be thought of as aris-
ing from an exchange of several partons with
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Figure 3.23: d�/dt distributions for exclusive J/ (left) and � (right) production in coherent and
incoherent events in di↵ractive e+Au collisions. Predictions from saturation and non-saturation
models are shown.

[209], an e+A event generator specialized
for di↵ractive exclusive vector meson produc-
tion based on the bSat [208] dipole model.
We limit the calculation to 1 < Q

2
< 10

GeV2 and x < 0.01 to stay within the va-
lidity range of saturation and non-saturation
models. The produced events were passed
through an experimental filter and scaled to
reflect an integrated luminosity of 10 fb�1/A.
The basic experimental cuts are listed in the
legends of the panels in Fig. 3.22. As ex-
pected, the di↵erence between the satura-
tion and non-saturation curves is small for
the smaller-sized J/ (< 20%), which is less
sensitive to saturation e↵ects, but is substan-
tial for the larger �, which is more sensitive
to the saturation region. In both cases, the
di↵erence is larger than the statistical errors.
In fact, the small errors for di↵ractive � pro-
duction indicate that this measurement can
already provide substantial insight into the
saturation mechanism after a few weeks of
EIC running. Although this measurement
could be already feasible at an EIC with
low collision energies, the saturation e↵ects
would be less pronounced due to the larger
values of x. For large Q

2, the two ratios
asymptotically approach unity.

As explained earlier in Sec. 3.2.1, coher-

ent di↵ractive events allow one to learn about
the shape and the degree of “blackness” of
the black disk: this enables one to study the
spatial distribution of gluons in the nucleus.
Exclusive vector meson production in di↵rac-
tive e+A collisions is the cleanest such pro-
cess, due to the low number of particles in the
final state. This would not only provide us
with further insight into saturation physics
but also constitute a highly important con-
tribution to heavy-ion physics by providing a
quantitative understanding of the initial con-
ditions of a heavy ion collision as described
in Sec. 3.4.2. It might even shed some light
on the role of glue and thus QCD in the nu-
clear structure of light nuclei (see Sec. 3.3).
As described above, in di↵ractive DIS, the
virtual photon interacts with the nucleus via
a color-neutral exchange, which is dominated
by two gluons at the lowest order. It is pre-
cisely this two gluon exchange which yields a
di↵ractive measurement of the gluon density
in a nucleus.

Experimentally the key to the spatial
gluon distribution is the measurement of the
d�/dt distribution. As follows from the op-
tical analogy presented in Sec. 3.2.1, the
Fourier-transform of (the square root of) this
distribution is the source distribution of the
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2. Quantum Chromodynamics: The Fundamental Description of the Heart of Visible Matter

are imprinted on the QGP and then transported to the 

final state by the perfect liquid. With regard to the former, 

recent experiments at RHIC and LHC provide surprising 

evidence of collective behavior in rare high multiplicity 

configurations generated even when light ions collide 

with heavy ions. It is possible that this evidence reflects 

collective behavior that was already present in the initial 

saturated gluon states of the colliding nuclei, in which 

case analogous DIS measurements at the EIC should 

show similar features. Alternatively, the RHIC and LHC 

evidence might indicate the formation of small QGP 

droplets even in light-ion-heavy-ion collisions, in which 

case EIC experiments should not show similar effects. 

With regard to the second aspect mentioned above, 

highly precise data are becoming available from the 

RHIC and LHC heavy-ion collisions on anisotropic 

patterns in particle emission that reflect early QGP 

matter density distortions of progressively more 

complex geometry. Comparisons of these anisotropies 

to hydrodynamic models can be used to extract the 

transport properties of the QGP with precision and to 

constrain the shape distributions of the initial state. The 

complementary constraints on the initial state extracted 

from EIC measurements will help facilitate the high-

precision extraction of the viscosity and other transport 

coefficients in the QGP liquid.

Figure 2.18: The schematic QCD landscape in probe resolving power 
(increasing upward) vs. energy (increasing toward the right), as a function 
of the atomic number of the nucleus probed. Electron collisions with heavy 
nuclei at the EIC will map the predicted saturation surface (colored surface) 
with the CGC region below that surface. Spatial distributions extracted 
from exclusive reactions (see text) will help demarcate the CGC region from 
the confinement regime.
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Figure 2.19: The ratio of diffractive over total cross section for DIS on 
a gold nucleus normalized to DIS on a proton, for different values of 
the mass-squared of hadrons produced in the collisions, predicted with 
(red curve) and without (blue curve) gluon saturation. The projected 
experimental uncertainties are smaller than the plotted points while the 
range of each model’s prediction (shaded bands on the left side) is smaller 
than the difference caused by saturation.

Formation of Hadrons and Energy Loss
How does nuclear matter respond to a fast moving 
color charge passing through it? How do quarks of 
different flavor dress themselves in nuclear matter to 
emerge as colorless hadrons? What does this dressing 
process tell us about the mechanisms by which quarks 
are normally confined inside nucleons?

The emergence of hadrons from quarks and gluons is 

at the heart of the phenomenon of color confinement 

in QCD. The dynamical interactions of energetic 

partons passing through nuclei or QGP provide unique 

analyzers, probing the poorly understood evolution from 

colored partons to color neutral hadrons. As envisioned 

in Figure 2.20, a nucleus in a collision at the EIC would 

provide a femtometer size “detector” to monitor the 

evolution from partons to hadrons.

For example, EIC experiments will measure the 

difference between producing light / mesons 

(containing up and down quarks) and heavy D0 mesons 

(containing a charm quark) in both electron+proton and 

electron+nucleus collisions. These measurements will 

provide critical information on the response of cold 
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EIC realization is timely
Path to realization
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Detector integration with the Interaction Region
Lessons learned from HERA

Ion beamline

Electron beamline

Possible to get 
~100% acceptance 
for the whole event

Total acceptance detector (and IR)

Crossing angles:  
eRHIC: 25 mrad
JLEIC :  50 mradFigure Courtsey: Rik Yoshida
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EIC Detector Concepts, others expected to emerge 
EIC Day 1 detector, with BaBar Solenoid
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BeAST at BNL

JLEIC Detector Concept, with CLEO Solenoid

Ample opportunity and 
need for additional 
contributors and 

collaborators 

TOPSiDE: Time Optimized PID Silicon Detector for EIC



The EIC Users Group: EICUG.ORG

Formally established in 2016
864 Ph.D. Members from 30 countries, 184 institutions

Map of institution’s locations

EICUG Structures in place and active.

EIC UG Steering Committee (w/ European Representative)
EIC UG Institutional Board
EIC UG Speaker’s Committee (w/European Rep.)

Task forces on:
-- Beam polarimetry
-- Luminosity measurement
-- Background studies
-- IR Design

Annual meetings: Stony Brook (2014), Berkeley (2015), ANL 
(2016), Trieste (2017), CAU (2018), Paris (2019)
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New:
Center for Frontiers in Nuclear Science (at Stony Brook/BNL)

EIC2 at Jefferson Laboratory

http://eicug.org/
http://www.stonybrook.edu/cfns/
https://www.eiccenter.org/eic-center-jefferson-lab
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Vision:
To support and help the US EIC community to realize the 
US EIC with the best possible physics (including new ideas 
beyond the EIC White Paper). Invest in and support young 
researchers in the field. 

Activities:
• Workshops & meetings

• 4 large workshops & 3-4 adhoc meetings per year
• Post doctoral fellow program: CFNS and joint-University-

CFNS post docs with remote institutions 
• Bi-monthly joint seminars (SBU/BNL)

• 40+ seminars and special talks / year
• Visitors program & exchange visitor program with other 

research centers being established
• Annual summer school for 30+ students being planned 

starting in August 2019

http://www.stonybrook.edu/cfns

• Established in Fall 2017 with generous 
support from the Simon’s Foundation and NY 
State. A collaboration between Stony Brook & 
BNL to create a frontier research center to 
support the US Electron Ion Collider (EIC) 
and enhance the US Nuclear Science

• Participation from EIC and QCD enthusiasts 
from around the world.

Director: Abhay.Deshpande@stonybrooke.edu
Contact: Ciprian.Gal@stonybrook.edu or CFNS_contacts@stonybrook.edu

http://www.stonybrook.edu/cfns
mailto:abhay.deshpande@stonybrooke.edu
mailto:Ciprian.Gal@stonybrook.edu
mailto:CFNS_contacts@stonybrook.edu


Opportunities for YOU: Physics beyond the EIC White Paper:

• Heavy quark and quarkonia (c, b quarks) studies beyond HERA, with 100-1000 times 
luminosities (??) Does polarization of hadron play any role?

• Quark Exotica: 4,5,6 quark systems…?
• Impact of precision measurements of unpolarized PDFs, especially at high x, for LHC
• What role would TMDs in e-p play in W-Production at LHC?
• Study of jets: Internal structure of jets 
• Jet propagation in nuclei… energy loss in cold QCD medium: a topic interest
• Initial state affects QGP formation!….. p-A, d-A, A-A at RHIC and LHC: many puzzles
• Gluon TMDs at low-x!
• Polarized light nuclei in the EIC
• Entanglement entropy in nuclear medium and its connections to fragmentation, 

hadronization and confinement
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EIC support, outreach and other news
European Particle Physics Strategic Update (EPPSU):
• CERN management very well informed about the US EIC. Very supportive. Encouraged strong involvement 

and input on EIC in the European High Energy Strategy Planning activity (currently underway)
• EIC Physics Whitepaper led by the European EICUG collaborators,  
• an accelerator design paper led by BNL and JLab together:  
è both well received at Grenada, Spain (EPPSU meeting held in May 2019)

Recent success in funding of EIC as part of the Hadron studies (Strong2020) in 
European Nuclear Physics $Eu 12M (Saclay, INFN and others) over 3 years

Optimism for realization of funding from
Ø BMBF Germany in near future for dedicated QCD studies aimed at the EIC/QCD 
Ø a Consortium of California Universities and California national labs supported by UC     

Chancellor’s office for the EIC
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Volume 4, Page 272:
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Mission Need, is planned for FY 2019.”



Summary:
• Science of EIC: Gluons that bind us all… understanding their role in QCD
• EIC’s precision, control and versatility will revolutionize our understanding QCD 

• The US EIC project has significant momentum on all fronts right now:
• National Academy’s positive evaluation à Science compelling, fundamental and timely
• EIC Users Group is energized, active and enthusiast: organized

• EICUG led working groups on polarimetry, luminosity measurement, IR design evolving
• Funding agencies taking note of the momentum: not just in the US but also internationally

• The science of EIC, technical designs (eRHIC and JLEIC) moving forward
• Pre-CDRs prepared by BNL (eRHIC) and JLab: machine & IR designs
• CFNS, EIC2 Centers established in the US to help EIC Users

• Independent Cost Review underway è CD0 anticipated soon. Exciting times ahead….
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Thank you.
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NAS Consensus: EIC science compelling, fundamental, and timely 
July 26, 2018

• Finding 1: An EIC can uniquely address three profound questions about nucleons—neutrons and 
protons—and how they are assembled to form the nuclei of atoms: 
• How does the mass of the nucleon arise? 
• How does the spin of the nucleon arise? 
• What are the emergent properties of dense systems of gluons?

• Finding 2: These three high-priority science questions can be answered by an EIC with highly 
polarized beams of electrons and ions, with sufficiently high luminosity and sufficient, and variable, 
center-of-mass energy. 

• Finding 3: An EIC would be a unique facility in the world and would maintain U.S. leadership in 
nuclear physics. 

• Finding 4: An EIC would maintain U.S. leadership in the accelerator science and technology of 
colliders and help to maintain scientific leadership more broadly. 

• Finding 5: Taking advantage of existing accelerator infrastructure and accelerator expertise would 
make development of an EIC cost effective and would potentially reduce risk. 
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National Academy’s Findings
• Finding 6: The current accelerator R&D program supported by DOE is crucial to addressing 

outstanding design challenges. 
• Finding 7: To realize fully the scientific opportunities an EIC would enable, a theory program 

will be required to predict and interpret the experimental  results within the context of QCD, 
and furthermore, to glean the fundamental insights into QCD that an EIC can reveal. 

• Finding 8: The U.S. nuclear science community has been thorough and thoughtful in its 
planning for the future, taking into account both science priorities and budgetary realities. Its 
2015 Long Range Plan identifies the construction of a high-luminosity polarized EIC as the 
highest priority for new facility construction following the completion of the Facility for Rare 
Isotope Beams (FRIB) at Michigan State University. 

• Finding 9: The broader impacts of building an EIC in the United States are significant in 
related fields of science, including in particular the accelerator science and technology of 
colliders and workforce development. 
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EIC science and required luminosity
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An Assessment of U.S.-Based Electron-Ion Collider Science

Copyright National Academy of Sciences. All rights reserved.
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such as an intact nucleon combined with a final state photon or vector meson, that 
occur in only a small fraction of all reactions. Parton imaging also requires an ac-
curate determination of not only total interaction rates, but of the dependence of 
these rates on the deflection angles of all scattered particles, for which large lumi-
nosity is also needed. Figure 2.4 indicates both the instantaneous luminosity as well 
as the annual integrated luminosity (for running time of 107 seconds per year, a 30 
percent duty factor) that can be achieved. It is the latter that ultimately controls the 
experimental uncertainty. Figure 2.5 shows the accuracy of the transverse gluon 
profiles that can be obtained from J/ψ production using an integrated luminosity of 
10 fb–1. Note the precision that can be achieved at large transverse radii bT, which is 
important for understanding the way in which confinement of quarks and gluons 
is reflected in the transverse spatial profile of parton distributions. 

FIGURE 2.4 The energy-luminosity landscape that encapsulates the physics program of an EIC. 
The horizontal axis shows the center-of-mass energy of the collider when operated in electron-
proton mode. The two vertical axes show the instantaneous and annual integrated (electron-nucleon) 
 luminosity; the latter is in units of inverse femtobarns and assumes a running time of 107 seconds 
per year. SOURCE: Presentation of EIC Science by A. Deshpande on behalf of the EIC Users Group.
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gluon fluctuations in the proton. It was generated using existing data on J/ψ pro-
duction on the proton. One can observe dramatic fluctuations in the shape of a 
single proton and that these fluctuations are quite different from what one would 
expect for a simple bound state of three constituent quarks. This is a far cry from 
early models of the proton. At low resolution, one expects to see correlations of 
nucleons in nuclei, and at fine resolution, one will determine fluctuations in the 
number of valence partons and fluctuations in the color field surrounding these 
partons. An EIC would be able to explore the power spectrum of fluctuations in 
nuclei and nucleons in detail and revolutionize the understanding of the emergence 
of matter from quantum fields of colored quarks and gluons.

FIGURE 2.11 Shape fluctuations of the proton. Four possible configurations of the gluon field in the 
proton are shown, where red denotes regions of strong field and blue denotes regions of weak field. 
The magnitude of the fluctuations between these samples is constrained by the observed coherent and 
incoherent diffractive J/ψ production cross sections. SOURCE: H. Mäntysaari and B. Schenke, 2016, 
Evidence of strong proton shape fluctuations from incoherent diffraction, Phys. Rev. Lett. 117:052301.
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(LHC) have pioneered studies of jet energy loss in a hot quark gluon plasma. An EIC would be 
uniquely positioned to study the evolution of jets in a cold nuclear medium. 

In studying the propagation of energetic quarks, the nucleus becomes a QCD laboratory, 
providing femtometer-scale detectors and a medium with known properties, such as size and 
density. Hadronization in cold nuclear matter is only qualitatively understood; questions remain-
ing about its space-time dynamics include its dependence on the quark mass and flavor and the 
mechanisms by which quarks and gluons lose their energy and become hadrons. 

Electron-nucleus collisions in which a meson is detected are an excellent tool for studying 
hadronization. With electrons as the probe, one can select the energy of the virtual photon, thus 
controlling the momentum transfer to the quark, and obtain clean measurements of medium-
induced energy loss by choosing high-photon energies, which lead to hadronization outside of 
the nucleus (see Figure 2.3.1, left). Similar techniques can be used to delineate the interplay 
between quark propagation and hadron formation mechanisms (see Figure 2.3.1, right). Study-
ing hadronization for light and heavy quarks in cold nuclear matter can unravel some of the 
remaining mysteries surrounding energy loss in a quark-gluon plasma. For example, experiments 
at RHIC and the LHC showed that light and heavy quarks lose energy at a similar rate, despite 
the fact that if the QCD interactions were weak, heavy quarks would be less likely to lose energy 
via medium-induced radiation of gluons.

FIGURE 2.3.1 Schematic illustration of the interaction of a parton (red line) mov-
ing through nuclear matter: the hadron is formed either outside the nucleus (left) or 
inside (right). SOURCE: Reaching for the Horizon, 2015 DOE/NSF Long Range Plan 
for U.S. Nuclear Science.

asymptotic freedom predicts that the interaction strength is weak, but the large 
gluon density implies that the gluon self-interaction, which is a central feature of 
QCD, is crucial. This regime is referred to as “dense saturated gluon matter.”3 If Qs 

3   This state is frequently described as a color glass condensate, where “glass” refers to slowing of the 
time evolution in a fast-moving nucleus by Lorentz time dilation, and “condensate” indicates that the 
phase space density of gluons is very high. The existence and the properties of this state are a direct 
consequence of the field equations of QCD. In the limit of large occupation number, these equations 
are approximately classical. Classical QCD has no intrinsic scale, and the color glass condensate leads 
to simple scaling relations for cross sections and particle production rates. It also provides initial 
conditions for the production of a quark-gluon plasma in heavy ion collisions. In collisions of two 

Color propagation, neutralization in nuclei & hadronization
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3D Imaging in Momentum

An important complement to the program of imaging the transverse posi-
tion of partons is the determination of transverse motion. Combined with the 
dependence on longitudinal motion encoded in Bjorken x, transverse momentum 
distributions (TMDs) provide a three-dimensional (3D) picture of the nucleon in 
momentum space. Due to the uncertainty principle, the transverse momentum of 
partons is related to the characteristic size of the quantum mechanical fluctuation 
from which it originated. Transverse momentum imaging therefore constrains the 
possible evolution of color fluctuations with Bjorken x, going from the valence sec-
tor at large x to the sea quark and gluon regime at small x. In the small x regime, 
the results provide important information about the limit of high gluon density, 
discussed in the last section of this chapter. In a polarized proton, one also expects 
that the orbital motion of partons is correlated with the spin direction, leading to 
correlations among spin, transverse motion, and transverse position. 

The transverse dynamics of partons can be accessed using a process called 
semi-inclusive deep-inelastic scattering (SIDIS). As in DIS, the target nucleon is 

FIGURE 2.5 Gluon density distribution at several values of Bjorken x. An estimate of the precision that 
can be achieved using real meson production at an EIC is shown, based on an integrated luminosity 
of 10 fb–1. The small insets illustrate the accuracy that can be achieved for large radii, relevant to the 
confinement problem. SOURCE: Reaching for the Horizon, 2015 DOE/NSF Long Range Plan for U.S. 
Nuclear Science.

Gluon imaging in nucleons
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FIGURE 2.7 Transverse momentum profile of anti-up (u
–
u) and anti-down (d

–
d) quarks in a proton. The 

figure shows three slices, ranging from the valence quark region at large Bjorken x to the sea quark 
regime at low x. The color range is from zero (dark blue) to largest positive values (deep red). The 
transverse momentum is given in units of GeV. The visible distortion of the d

– anti-down quark profile 
at large x is a signature of the correlation of a large quark orbital angular momentum with the spin of 
the proton. The spin direction of the proton is indicated by the red arrow. Extrapolations to the smallest 
x, using a simple analytic function, are given for illustration. SOURCE: Z.-E. Meziani and A. Prokudin.

2+1D imaging of quarks and gluons, 
dynamics,  and emergence of  spin & 
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Uniqueness of EIC among all DIS Facilities

All DIS facilities in the world.

However, if we ask for: 

• high luminosity & wide reach in √s

• polarized lepton & hadron beams
• nuclear beams

EIC stands out as 
unique facility …
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Recent progress in Lattice QCD
• For the first time PDFs are attempted to being calculated on the lattice! While the 

current uncertainty estimates are hotly debated amongst experts, eventual precision 
lattice calculations will need precision experimental measurements….

• Accessing Gluon Distribution in Large Momentum Effective Theory, Jian-Hui Zhang et al., PRL 122, 142001, April 2019
• First Direct lattice-QCD calculation of the x-dependence of the pion PDF, J-W.Chen et al, arXiv 1804.01483 
• Parton Distribution functions and one loop matching, https://doi.org/10.1142/S2010194516600533 , X. Ji et al.
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C. Alexandrou et al. PRL 119, 142002 (2017)

q Gluon’s spin contribution on 
Lattice: SG = 0.5(0.1): Yi-Bo Yang 

et al. PRL 118, 102001 (2017)

q Jq calculated on Lattice QCD:
𝛘QCD Collaboration, PRD91, 

014505, 2015

Nucleon spin and momentum distribution

https://doi.org/10.1142/S2010194516600533

