Key ingredient of **nuclear** physics: Change the **nucleus**
Spin physics
— $W A_L$ results
— $J/\psi A_N$ results
— ηA_N results
— $h^+ A_N$ results

Large systems
— Single particle R_{AA} results, multiple species and collisions
— $\pi^0 - h$ correlations in Au+Au
— Spectra of charm and bottom in $p+p$
— v_2 of charm and bottom in Au+Au

Small systems
— ϕ meson nuclear modification factors
— Drell-Yan measurement in p+Au
— Longitudinal dynamics in small systems
— Small systems geometry scan
— Direct photon measurements in p+Au
Spin physics
W A_L

Sensitivity to light sea quarks

Consistency between PHENIX, STAR, global fits
ηA_N is consistent with zero (but noticeable structure)
\(\eta A_N \) is consistent with zero (but noticeable structure)

Dramatic improvement in statistical and systematic uncertainties over previous result
Nuclear target dependence on $J/\psi A_N$

What’s the origin of the asymmetry at low p_T in $p+Au$?
Clear and strong dependence on nuclear target size $A^{1/3}$
Very similar dependence on N_{coll}

$\alpha = 1.21$

$\beta = 1.19$
Spin Summary

$W \ A_L$ now published

New results on $\eta \ A_N$
—Dramatic improvement in statistical and systematic precision over previous results
—Results consistent with zero

$J/\psi \ A_N$ now published
—Illustrates important of changing nuclear target in spin physics
—Why is $J/\psi \ A_N$ non-zero in $p+Au$?

$h^+ \ A_N$ just submitted to PRL
—Clear dependence of asymmetries on nuclear target, both $A^{1/3}$ and N_{coll}
Large Systems
Identified particle R_{AA} in large systems

New!

R_{AA}

$\omega \to \pi^0 \gamma, A+A, |s_{NN}|=200 \text{ GeV}$

$|y| < 0.35$

- 20-60% Au+Au, $\langle N_{\text{part}} \rangle = 101.6$, PRC84, 044902
- 0-20% Cu+Cu, $\langle N_{\text{part}} \rangle = 85.9$, PRC84, 044902
- 20-40% Cu+Au, $\langle N_{\text{part}} \rangle = 80.4$

ω and ϕ mesons behave similarly in Cu+Cu, Cu+Au, Au+Au
Identified particle R_{AA} in Cu+Au

R_{AA} of identified neutral mesons π^0, η, K_S^0, ω

Similar behavior for all species at high p_T

R_{AA} in Cu+Au, $\sqrt{s_{NN}}=200$ GeV

$|y| < 0.35$

$\pi^0\rightarrow\gamma\gamma$

$\eta\rightarrow\gamma\gamma$

$K_S\rightarrow\pi^0\pi^0$

$\omega\rightarrow\pi^0\gamma$

New! R_{AA} of identified neutral mesons π^0, η, K_S^0, ω

$\pi^0(\eta)\rightarrow\gamma\gamma$ published in arXiv:1805.04389

PHENIX highlights at RHIC & AGS AUM 2019 Slide 12
Identified particle R_{AA} in U+U

New!

R_{AA} of identified neutral mesons π^0, η, K_S^0

Similar behavior for all species at high p_T
New!

Broadening of the away side for low p_T, similar width at high p_T
$c \to e$ and $b \to e$ in $\text{Au}+\text{Au}$ and $p+p$

HF electron spectra, all centralities and using all available data
c → e and b → e in Au+Au and p+p

Now published!

HF electron spectra, all centralities and using all available data
New p+p reference data; new publication with R_{AA} on the way!
$c \rightarrow e$ and $b \rightarrow e$ in Au+Au

\begin{center}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline
$p_T [\text{GeV/c}]$ & 0 & 0.5 & 1 & 1.5 & 2 & 2.5 & 3 & 3.5 & 4 & 4.5 & 5 \\
\hline
\end{tabular}
\end{center}

Charm $\nu_2 > 0$

Bottom $\nu_2 > 0$
$c \rightarrow e$ and $b \rightarrow e$ in $Au+Au$

Charm $v_2 > 0$
Bottom $v_2 > 0$
Both smaller than light flavor
Single particle R_{AA} independent of collision species when selecting for similar N_{part}

Neutral mesons R_{AA} very similar in Au+Au despite different strangeness content
—Strangeness very important at low p_T but not at high p_T

Correlation measurements show away-side broadening
—Indicates large-angle radiation of high-p_T partons

Measurement of $c \rightarrow e$ and $b \rightarrow e$ spectra in $p+p$
—Publication with new R_{AA} coming soon

First measurement of bottom flow at RHIC
—Refinements and publication forthcoming
Small Systems
Identified hadron nuclear modification factors in $p+Au$

New!

ϕ meson in $p+Au$
Identified hadron nuclear modification factors in $p+Au$

New!

ϕ meson in $p+Au$

ϕ shows similar modification to π^0 in $p+Au$ despite different mass and strangeness content
Identified hadron nuclear modification factors in $^3\text{He}+\text{Au}$

New!

ϕ meson in $^3\text{He}+\text{Au}$
Identified hadron nuclear modification factors in $^3\text{He}+\text{Au}$

New!

ϕ meson in $^3\text{He}+\text{Au}$

ϕ shows similar modification to π^0 in $^3\text{He}+\text{Au}$ despite different mass and strangeness content.
Drell-Yan from angular correlations in $p+p$

Drell-Yan well-described by NLO pQCD & PYTHIA

arXiv:1805.04075 (PRD)
arXiv:1805.02448 (PRD)
Drell-Yan from angular correlations in $p+Au$

New!

Hints of modification to Drell-Yan in $p+Au$, though large uncertainties prevent a firm conclusion.
\(J/\psi \) nuclear modification in small systems

New!

Inclusive \(J/\psi \) \(\sqrt{s_{\text{NN}}} = 200 \text{ GeV} \)

\(-2.2 < y < -1.2\) (A-going)

\(p + A \) \(R \)

0.5 1 1.5 2

\(p + \text{Al} \)

PHENIX preliminary

Inclusive \(J/\psi \) \(\sqrt{s_{\text{NN}}} = 200 \text{ GeV} \)

\(1.2 < y < 2.2 \) (p-going)

\(p + \text{Al} \)

PHENIX preliminary

New!
J/ψ nuclear modification in small systems

ψ Inclusive J/ψ \(\sqrt{s_{NN}} = 200 \text{ GeV} \)

-2.2<y<-1.2 (A-going)

=200 GeV

\(p+A \)

1.2<y<2.2 (p-going)

\(p+Al \rightarrow p+Au — \text{big change when increasing nuclear target size} \)

\(p+Al \rightarrow p+Au — \text{big change when increasing nuclear target size} \)

New!
J/ψ nuclear modification in small systems

New!

\[\frac{d^2N}{dy \, dp_T^2} = \frac{N_{p+A}}{N_{p+A}} \times \frac{N_{p+Al}}{N_{p+Al}} \]

- \(p+\text{Al} \rightarrow p+\text{Au} \) — big change when increasing nuclear target size

PHENIX highlights at RHIC & AGS AUM 2019

Slide 23
J/ψ nuclear modification in small systems

New!

$\frac{d^2N}{dp_T^2dy} = \frac{N_{	ext{p+p}}}{N_{	ext{He+Au}}}$

Inclusive J/ψ \(\sqrt{s_{\text{NN}}} = 200 \text{ GeV} \)

$-2.2 < y < -1.2$ (A-going)

$1.2 < y < 2.2$ (p3He-going)

$p+Al \rightarrow p+Au$—big change when increasing nuclear target size

$p+Au \rightarrow ^3\text{He}+Au$—small change when increasing projectile size
Good agreement with wounded quark model
Good agreement with 3D hydro
Longitudinal dynamics in small systems

Now published!

v_2 vs η in $p+\text{Al}$, $p+\text{Au}$, $d+\text{Au}$, and $^3\text{He}+\text{Au}$

Good agreement with 3D hydro for $p+\text{Au}$ and $d+\text{Au}$
Testing hydro by controlling system geometry

Now published!

Testing hydro by controlling system geometry

Now published!

\[v_2 \text{ and } v_3 \text{ ordering matches } \varepsilon_2 \text{ and } \varepsilon_3 \text{ ordering in all three systems} \]
Testing hydro by controlling system geometry

\[p + Au \ \sqrt{s_{NN}} = 200 \text{ GeV} \ \text{0-5\%} \] \hspace{1cm} (a)

\[d + Au \ \sqrt{s_{NN}} = 200 \text{ GeV} \ \text{0-5\%} \] \hspace{1cm} (b)

\[^3\text{He} + Au \ \sqrt{s_{NN}} = 200 \text{ GeV} \ \text{0-5\%} \] \hspace{1cm} (c)

\[V_n \] vs \[p_T \] (GeV/c)

Now published!

\[v_2 \] and \[v_3 \] vs \[p_T \] described very well by hydro in all three systems
Testing hydro by controlling system geometry

Now published!

\[\sqrt{s_{NN}} = 200 \text{ GeV} \ 0-5\% \]

\(v_2 \) and \(v_3 \) vs \(p_T \) described very well by hydro in all three systems

Initial state model qualitatively agreed with data...

PHENIX highlights at RHIC & AGS AUM 2019

R. Belmont

PHENIX highlights at RHIC & AGS AUM 2019

Slide 28
Testing hydro by controlling system geometry

v_2 and v_3 vs p_T described very well by hydro in all three systems.

Initial state model qualitatively agreed with data...

But recently discovered issue with calculation reduces p_T scale by factor of 5

http://www.int.washington.edu/talks/WorkShops/int_19_1b/People/Mace_M/Mace.pdf
Testing hydro by controlling system geometry

Now published!

\[\nu_2 \text{ Data} \]
\[\nu_3 \text{ Data} \]
\[\nu_n \text{ SONIC} \]
\[\nu_n \text{ iEBE-VISHNU} \]

\(p+Au \ \sqrt{s_{NN}} = 200 \text{ GeV} \ 0-5\% \)

\(d+Au \ \sqrt{s_{NN}} = 200 \text{ GeV} \ 0-5\% \)

\(^3\text{He}+Au \ \sqrt{s_{NN}} = 200 \text{ GeV} \ 0-5\% \)

\(\nu_2 \) and \(\nu_3 \) vs \(p_T \) described very well by hydro in all three systems

\(p+Au \)

\(d+Au \)

\(^3\text{He}+Au \)

http://www.int.washington.edu/talks/WorkShops/int_19_1b/People/Mace_M/Mace.pdf
Photons in small systems

$\sqrt{s_{NN}} = 200$ GeV, $|\eta| < 0.35$

$p+Au, 0-100\%$

PHENIX preliminary
Photons in small systems

Thermal photons in $p+Au$?

$\sqrt{s_{\text{NN}}} = 200$ GeV, $|\eta| < 0.35$

- **p+Au, 0-100 %**

- **p+Au, 0-5 %**

R. Belmont

PHENIX highlights at RHIC & AGS AUM 2019 Slide 29
Photons in small systems

$\sqrt{s_{NN}} = 200 \text{ GeV, } |\eta| < 0.35$

- p+Au, 0-100 %
 - Thermal, Shen et al
 - pQCD, Shen et al

- p+Au, 0-5 %
 - Thermal, Shen et al
 - pQCD, Shen et al

Photon yields

PHENIX highlights at RHIC & AGS AUM 2019

Common scaling for $Au+Au$ and $Pb+Pb$ at different energies; very different from N_{coll}-scaled $p+p$
Photon yields

Common scaling for Au+Au and Pb+Pb at different energies; very different from \(N_{\text{coll}}\)-scaled \(p+p\)

\(p+Au\) and \(d+Au\) in between
Modification of ϕ very similar to that of π^0 despite differences in mass and strangeness content

First measurement of Drell-Yan in small systems at RHIC
—Hint of enhancement but no firm conclusions

Comprehensive set of measurements of longitudinal dynamics
—Good support for wounded quark model and 3D hydro

Geometry scan results published in Nature Physics
—Only hydro can describe all the data

Photon enhancement in small systems
—Important additional evidence in support of QGP droplet formation in small systems
Additional Material
Identified hadron nuclear modification factors

New!

φ meson in U+U
Identified hadron nuclear modification factors

New!

\(\phi \) meson in U+U

PHENIX highlights at RHIC & AGS AUM 2019 Slide 33
Identified hadron nuclear modification factors

New!

ϕ meson in U+U
Small systems flow

- Charged hadrons
 -2.0 < \(\eta < -1.4 \)
 \(\text{Sys}_{\text{Global}} = 1.9\% \)

- Charged hadrons
 1.4 < \(\eta < 2.0 \)
 \(\text{Sys}_{\text{Global}} = 1.9\% \)

Nonzero \(v_2 \) for heavy flavor in d+Au
Nonzero v_2 for heavy flavor in $d+Au$

PHENIX highlights at RHIC & AGS AUM 2019
Small systems flow—heavy flavor

Nonzero v_2 for heavy flavor in $d+Au$

3.22σ, 2.16σ for $v_2 > 0$ at backward, forward (99.9%, 98.5% one-sided)
Identified particle v_2 vs p_T in p+Au, d+Au, and 3He+Au — Mass ordering well-described by hydro
Measurement of v_2 in $d+Au$ at 200 GeV and v_2 in $d+Au$ at all energies.

Measurement of $v_2\{6\}$ in $d+Au$ at 200 GeV and $v_2\{4\}$ in $d+Au$ at all energies.
$d+Au$ beam energy scan

Event plane v_2 vs p_T measured for all energies
d+Au beam energy scan

200 GeV

- $\sqrt{s_{NN}} = 200 \text{ GeV} 0-5\%$
- $|\eta| < 0.35$
- $v_2(\text{EP})$
- Global Sys. = ±0.3%

62.4 GeV

- $\sqrt{s_{NN}} = 62.4 \text{ GeV} 0-5\%$
- SONIC v_2
- superSONIC v_2
- Global Sys. = ±1.8%

39 GeV

- $\sqrt{s_{NN}} = 39 \text{ GeV} 0-10\%$
- PHENIX
- Global Sys. = ±3.6%

19.6 GeV

- $\sqrt{s_{NN}} = 19.6 \text{ GeV} 0-20\%$
- Extrapolated
- $\text{Res}(v_2^{1<|\eta|<3})$
- Global Sys. = ±35% -48%

Event plane v_2 vs p_T measured for all energies

Hydro theory agrees with higher energies very well, underpredicts lower energies—nonflow?

d+Au beam energy scan

Select $10 < N_{\text{tracks}}^{\text{FVTX}} < 30$, integrate

AMPT sees similar trend

Fluctuations?

- Not Bessel-Gaussian
- Not small-variance limit
- Need to understand fluctuations better

R. Belmont

PHENIX highlights at RHIC & AGS AUM 2019

Forward modification consistent with nPDF effects (EPPS16)
Small systems nuclear modification

High-\(p_T\) modification consistent with nPDF effects (EPPS16)

- For p+Al → h^+ + X, 0-100% centrality
 - -2.2 < \(\eta\) < -1.2 (Al-going)
 - 1.2 < \(\eta\) < 2.4 (p-going)

- For p+Au → h^+ + X, 0-100% centrality
 - -2.2 < \(\eta\) < -1.2 (Au-going)
 - 1.2 < \(\eta\) < 2.4 (p-going)

PHENIX preliminary
Stronger effects in central collisions
Small systems nuclear modification

$p+Al \rightarrow h^+ + X \sqrt{s_{NN}}=200$ GeV
0-5% centrality

-2.2<\eta<-1.2 (Al-going)
1.2<\eta<2.4 (p-going)

Strong enhancement for backward at intermediate p_T—why?

PHENIX highlights at RHIC & AGS AUM 2019 Slide 39
Small systems nuclear modification

Strong enhancement for backward at intermediate p_T—why?
Don't forget: particle species dependence of Cronin! There must be final state effect(s)...

R. Belmont

PHENIX highlights at RHIC & AGS AUM 2019 Slide 39
Particle species dependence of “Cronin enhancement”

Small systems: $p+Al, p+Au, d+Au, ^3He+Au,$

Large systems: $Cu+Cu, Cu+Au, Au+Au, U+U,$
c\bar{c} and b\bar{b} from angular correlations in p+p

Pair creation at LO, flavor excitation and gluon splitting at NLO

PYTHIA suggests b\bar{b} dominated by pair creation
$b\bar{b}$ from angular correlations in $p+p$

$b\bar{b}$ cross-section consistent with previous measurements, larger than FONLL

arXiv:1805.04075 (submitted to PRL)
arXiv:1805.02448 (submitted to PRD)
Collectivity in large systems

\[v_2^{2,|\eta|>2} \]

\[v_2^{4} \]

\[v_2^{6} \]

\[v_2^{8} \]

1 < |\eta| < 3

\[v_2^{2}, v_2^{4}, v_2^{6}, v_2^{8} \]
Collectivity in large systems

\[\frac{\sigma_{v_2}}{\langle v_2 \rangle} \]

1 < |\eta| < 3

PHENIX

\[\sqrt{s_{\text{NN}}} = 200 \text{ GeV} \]

Au+Au

MC Glauber, cumulant based estimate
MC Glauber, direct calculation
AMPT

Data

Sys. Uncert. 2%
Collectivity in large systems

1 < |\(\eta \) | < 3

Cannot extract

\(\sigma_{v_3}/\langle v_3 \rangle \)
Collectivity in large systems

Can extract $\langle v_2 \rangle$ and σ_{v_2} separately using forward-fold
Collectivity in large systems

\[\langle v_3 \rangle \]

\[\sigma_{v_3} \]

\[\sigma_{v_3} / \langle v_3 \rangle \]

PHENIX Au+Au 200 GeV

Can extract \(\langle v_3 \rangle \) and \(\sigma_{v_3} \) separately using forward-fold