RHICf Results

Cold QCD Workshop
RHIC & AGS Annual Users’ Meeting
June 4th, 2019
Yuji Goto (RIKEN)
RHICf collaboration

RHICf is partially supported by the U.S.-Japan Science and Technology Cooperation Program in High Energy Physics, and performed by strong collaboration with the STAR collaboration
RHICf experiment

- EM calorimeter (RHICf detector) installed in front of the ZDC+SMD of the STAR experiment
 - Cross section and asymmetry measurement of neutral particle production (neutron, photon, π^0) with $\sqrt{s} = 510$ GeV polarized proton collisions
 - Wide p_T region covered by changing the position of the RHICf detector vertically (up to 1.2 GeV/c)
 - Much higher position resolution than ZDC+SMD so that enable us higher resolution of p_T measurement
RHICf detector

- Two position-sensitive sampling calorimeters
 - TS (small tower): 20mm x 20mm
 - TL (large tower): 40mm x 40mm
 - Tungsten absorber (44 X_0, 1.6 λ_{int})
 - 16 GSO sampling layers
 - 4 XY pairs of GSO-bar position layers (MAPMT readout)
Cross section measurement

- Majority of energy flow from hadronic collisions concentrated in the very forward region, but reaction mechanism insufficiently understood there
 - Uncertainty to understand air-shower from ultra-high energy cosmic rays
 - Improvement of high-energy collision models based on measurement essential
- Feynman scaling
 - Energy-independent x_F & p_T distribution of the cross section of very forward particle production
 - Wider p_T coverage at RHIC energy (limited at LHC low energy collision)

LHCf results of π^0 production cross section at $\sqrt{s}=7$TeV and 2.76TeV

Transverse polarized proton collision

- A_N (transverse single-spin asymmetry) measurement
 \[A_N = \frac{d\sigma_{\text{Left}} - d\sigma_{\text{Right}}}{d\sigma_{\text{Left}} + d\sigma_{\text{Right}}} \]

- Azimuthal angle modulation (or dependence)
- Large A_N for forward hadron production
 - $1 < \eta < 4$, similar results in wide \sqrt{s}
Transverse polarization phenomena

• TMD (Transverse Momentum Dependent) function and higher-twist function

• “Sivers” effect
 • Initial-state effect
 • TMD (Sivers) distribution function
 • Need 2 scales (p_T and Q^2)
 • Drell-Yan, W/Z boson production
 • Higher-twist distribution function
 • Need 1 scale (p_T)
 • Hadron, photon, jet production

• “Collins” effect
 • Transversity + final-state effect
 • TMD (Collins) fragmentation function
 • Higher-twist fragmentation function
Higher-twist effect

- Quantum many-body correlation among quarks and gluons
 - Based on collinear factorization
 - quark-gluon correlation, tri-gluon correlation, twist-3 fragmentation
- Reproducing experimental data with precision calculation of twist-3 fragmentation function

Kanazawa, Koike, Metz, Pitonyak
PRD 89, 111501 (2014).
New question

• A_N DY jet asymmetry
 • Small A_N of forward jet production comparing with that of forward hadron production
 • Mixture (cancellation) of u-quark jet and d-quark jet, or other non-perturbative effects?

• STAR multiplicity dependence
 • A_N for different number of photons
 • A_N decreases as the event complexity increases (more jet-like)
 • How much of the large $\pi^0 A_N$ comes from hard scattering?

• π^0 asymmetry at RHICf?
 • $p_T < 1$ GeV/c, $\eta > 6$
 • Limited by the shadow of the beam pipe
 • Non-perturbative regime
π^0 asymmetry at RHICf

- $p_T < 1$ GeV/c, $\eta > 6$
- Non-perturbative regime
 - How much π^0 asymmetry?
 - Matching to pQCD regime?

June 4, 2019

RHIC-IP12 $\sqrt{s} = 200$ GeV $p_T < 0.1$ GeV/c
Very forward π^0 raw asymmetry

Table 1
Asymmetries measured by the EMCal. The errors are statistical and systematic, respectively. There is an additional scale uncertainty, due to the beam polarization uncertainty, of $(1.0^{+0.47}_{-0.24})$.

<table>
<thead>
<tr>
<th></th>
<th>Forward</th>
<th>Backward</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutron</td>
<td>$-0.090 \pm 0.006 \pm 0.009$</td>
<td>$0.003 \pm 0.004 \pm 0.003$</td>
</tr>
<tr>
<td>Photon</td>
<td>$-0.009 \pm 0.015 \pm 0.007$</td>
<td>$-0.019 \pm 0.010 \pm 0.003$</td>
</tr>
<tr>
<td>π^0</td>
<td>$-0.022 \pm 0.030 \pm 0.002$</td>
<td>$0.007 \pm 0.021 \pm 0.001$</td>
</tr>
</tbody>
</table>

PHENIX & STAR $\sqrt{s} = 200$ GeV

Neutron asymmetry

- Very large left-right asymmetry (A_N) of very forward neutron discovered at RHIC
 - $A_N(62 \text{ GeV}) < A_N(200 \text{ GeV}) < A_N(500 \text{ GeV})$
 - \sqrt{s} dependence or p_T dependence?

- Interference of pion exchange and other Reggeon exchange?
 - Kopeliovich, Potashnikova, Schmidt, Soffer: PRD84, 114012 (2011)

- Improved p_T precision and wider p_T coverage ($p_T < 1.2 \text{ GeV/c}$) at $\sqrt{s} = 510 \text{ GeV}$ in the RHICf experiment

Inclusive neutron

Neutron with charged particles
2017 operation

- June 23 commissioning of polarized proton collisions, detector installation at the final position, detector commissioning
 - $\beta^* = 8\text{m}$, radial polarization
- June 24 – 27 physics data acquisition
 - 27.7 hours, \sim110M events, \sim700 nb$^{-1}$
- 3 detector positions
 - TL center / TS center / Top position
Data accumulation & statistics

- ~700 nb\(^{-1}\) integrated luminosity, ~110 M events recorded
- Common data taken by RHICf DAQ and STAR DAQ
 - separated data streams and records
- RHICf triggers
 - Shower (baseline)
 - Hits in 3 consecutive layers on TS or TL
 - Large prescale
 - 2 photons (for \(\pi^0\))
 - Hits in 3 consecutive layers in upstream 7 layers of both TS and TL
 - No prescale
 - High-energy photon (for \(\gamma\) and \(\pi^0\))
 - Large energy deposit in the 4\(^{th}\) layer of TS or TL
 - Small prescale (~2)
- STAR trigger
 - With or without TPC data
 - Roman Pot + TPC data
 - for diffraction event selection

June 4, 2019
π⁰ reconstruction

- Positions of decay photons measured by 1mm dimension GSO bars
- Energy corrections
 - Position dependence
 - Energy scale
 - Performance confirmed with test beams
π⁰ reconstruction

- π⁰ peak with \(\sim 10\) MeV/c² width
- 3σ region selected as π⁰ candidates

![Graph showing π⁰ reconstruction](image)

Type-I: (same as single high-E photon)

Type-II: π⁰-candidate
\(\pi^0 \) reconstruction

- Relative peak position of reconstructed \(\pi^0 \) mass in each run

- \(\pi^0 \) kinematics
 - \(p_T < 1.0 \text{ GeV/c} \)
 - \(0.2 < x_F < 1.0 \)
A_N of very forward π^0

- p_T dependence
 - Large asymmetry (up to 0.1) even at low p_T ($p_T < 0.6$ GeV/c)
 - Becoming larger (more than 0.1) at high p_T (0.6 GeV/c $< p_T$)

Data analysis has been performed by Minho Kim (Korea Univ.)

Background asymmetry (measured, zero consistent) subtracted

Bar: statistical error
Box: systematic uncertainties including beam center correction, acceptance correction, polarization, and background asymmetry subtraction
A_N of very forward π^0

- x_F dependence
 - $A_N \sim 0$ at $p_T < 0.09$ GeV/c
 - $A_N > 0$ at 0.09 GeV/$c < p_T$ and rising with x_F
To do

• Event type categorization

• Diffraction + resonance tagging with STAR + RHICf combined data analysis
 • Resonance with STAR Roman Pot
 • Diffraction with STAR forward detectors (FMS, BBC, VPD)
 • Or nothing (rapidity gap)

• Event type, multiplicity (FMS) dependence of cross section & asymmetry to be obtained
 • For more information to study production mechanism
Summary & plan

• Preliminary A_N result of very forward π^0 obtained
 • p_T & x_F dependences
 • Large asymmetry in non-perturbative regime
 • Matching to pQCD regime?

• STAR + RHICf combined analysis to be performed
 • For production mechanism, soft & hard components
 • Event type definition with STAR forward detectors and Roman Pot
 • Neutron analysis with RHICf + STAR ZDC
 • Asymmetry of STAR forward and midrapidity detectors with neutron/π^0 tag at RHICf

• Possible future plan
 • STAR p+p $\sqrt{s} = 510$ GeV in 2021 (?)
 • Possible RHICf proposal of p+p (& p+A ?)
 • sPHENIX p+p $\sqrt{s} = 200$ GeV
 • Baseline 2023-2025: p+p & p+A in 2024
 • Detector development in collaboration with people having common interest in position-sensitive calorimeter
Backup Slides
Physics at RHICf

- Majority of energy flow from hadronic collisions concentrated in the very forward region, but reaction mechanism insufficiently understood there.

- How to apply for understanding air-shower from ultra-high energy cosmic rays:
 - Phenomenological approach

- How to understand non-perturbative aspect in QCD:
 - Asymmetry measurement in addition to cross section
Transverse polarized proton collision

- A_N (transverse single-spin asymmetry) measurement

 $$A_N = \frac{d\sigma_{Left} - d\sigma_{Right}}{d\sigma_{Left} + d\sigma_{Right}}$$

 - Azimuthal angle modulation (or dependence)

- Large A_N for forward hadron production

 - $1 < \eta < 4$, similar results in wide \sqrt{s}

- TMD (Transverse Momentum Dependent) function and higher-twist function

 - Initial-state effect or “Sivers” effect
 - Final-state effect or “Collins” effect

- Hard scattering and/or non-perturbative effect?

 - Diffractive scattering
π⁰ asymmetry at RHICf

- $\pi^0 A_N$ measurement using TL at $+y=16.6\text{mm}$, $\langle \eta \rangle = 6.4$, $\sqrt{s} = 510\text{ GeV}$
 - $3 \times 10^5 \pi^0$ detected in 4-hour measurement
 - Comparison of existing η region (3–4) and RHICf high-η region (> 6)

- Higher-twist effect calculation by Pitonyak
- pQCD calculation does not apply for the very low p_T values
- At $p_T > 0.75\text{ GeV}/c$, this mechanism cannot generate A_N since phase space vanishes

See Minho’s presentation of first result from RHICf
Forward neutron production

PHENIX, PRD, 88, 032006 (2013)

$p_T < 0.11 \times_F \text{ GeV/c}$
$\sqrt{s} = 30-60 \text{ GeV @ISR}$
$\sqrt{s} = 200 \text{ GeV @RHIC}$

LHCf
$p_T < 0.11 \times_F \text{ GeV/c}$
$\sqrt{s} = 7000 \text{ GeV @LHC}$

- PHENIX explains the result by 1 pion exchange
- More complicated exchanges at $>$TeV?
Forward neutron production

• Cross section measurement at HERA(e+p)/NA49(p+p)
 • High resolution p_T distribution
 • $\sigma \propto a(x_F) \cdot \exp(-b(x_F) \cdot p_T^2)$, $b \sim 8$ GeV$^{-2}$ for $0.3 < x_F < 0.85$
 • x_F distribution
 • Suppression of the forward peak at high \sqrt{s}?

• More data necessary to understand the production mechanism
 • Asymmetry measurement as a new independent input

NA49 Collaboration,
Eur. Phys. J.

Wide η & p_T coverage
Commissioning

- $\sqrt{s} = 510$ GeV
- Large $\beta^* = 8$ m
 - Requirement of parallel beam for angle and p_T precision
 - Luminosity $\sim 10^{31}$ cm$^{-2}$s$^{-1}$
- Vertical \rightarrow Radial polarization
 - For asymmetry measurement at large angle (or large p_T)
 - Change of polarization direction with Spin Rotator magnet
Quick performance evaluation

• Beam center position
 • Checked with > 200 GeV hadron shower incident position

• $\pi^0 \rightarrow \gamma \gamma$
 • Invariant mass distribution of photon-pair event
 • To be improved by energy calibration and shower leakage correction
RHICf & STAR correlation

• Correlation of RHICf calorimeter and STAR ZDC
 • (Anti)correlation with deep-penetrating hadronic shower in the RHICf calorimeter and shower leakage measured in the ZDC
 • Correlation only with the West ZDC as expected
 • Event correspondence of RHICf DAQ and STAR DAQ correctly confirmed
\(\pi^0 \) kinematics

- \(\pi^0 \) peak with \(\sim 10 \text{ MeV}/c^2 \) width
 - 3\(\sigma \) region selected as \(\pi^0 \) candidates
- \(p_T < 1.0 \text{ GeV}/c \)
- \(0.2 < x_F < 1.0 \)
Future plan

• RHIC schedule
 • STAR p+p √s = 510 GeV in 2021 (?)
 • Possible RHICf proposal of p+p & p+A
 • sPHENIX p+p √s = 200 GeV & p+A
 • Baseline 2023-2025: p+p & p+A in 2024
 • Extension 2026-2027 (before EIC)

• Detector development
 • Collaboration with people having common interest in position-sensitive calorimeter
 • Possible proposal for EIC R&D program for very forward measurements
 • “Generic Detector R&D for an Electron Ion Collider” operated by BNL
 • Radiation tolerance / position-sensitive calorimeter / EIC IR design (ZDC + spectrometer)