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Outline

» Jet quenching
» Jet evolution in a plasma
» Medium response vs turbulent gluon cascade

» Medium modification of jet substructure



Jet quenching

Jet physics at colliders Heavy lon Collisions Crossover phase transition
(T=0) (from lattice QCD)
nucleus T. ~ 173 TeV
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LHC: T ~ 600MeV
RHIC: T ~ 350 MeV

» Jet quenching refers to the suppression and modification of a jet as it
propagates through hot QCD matter

» Strong final state interactions cause high pT jets to lose energy to the
plasma



Jet quenching

» Two decades after Bjorken prediction, jet Inclusive hadrons
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Probing high density QCD with jets

» Guidance from first principles: how does a jet as a system
interact with the QGP? Is it perturbative?

— How Is transported from energetic partons to low momenta and
dissipated in the QGP?

— How is the jet substructure modified?
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QCD jets in a nutshell

o Soft & Collinear divergences: high probability for branching

d6 dw color factors (quark and gluon):
dP ~ OéSCR — o
0 w CR — CF or CA

e Jet collimation: jets are dominated by collinear splittings
* (Color coherence: soft radiation depleted due to destructive interference

R>0{ >0, > ..

pT

Hadronization

[Bassetto, Ciafaloni, Marchesini, Mueller, Dokshitzer, Khoze, Toyan, Collins, Soper, Sterman ... 1980’s]
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Multiple soft scattering and ¢

e |n a dense colored medium (QGP) a high energy parton produced in a
hard collision undergoes multiple interactions with the plasma constituents

dP
dz dqi

n

~ a2 Chp q_4 — Coulomb scattering
I

e Momentum boarding: the dominant collisions are soft. The effect is a
diffusion in transverse momentum space

Y. Mehtar-Tani 14 RHIC & AGS Users’ Meeting 2019



Multiple soft scattering and ¢ at NLO

¢ T[he next-to-leading contribution to and energy
loss is enhanced by a (potentially large) double logarithm

T

[Wu (2011) Liou, Mueller, Wu (2014) Blaizot, lancu, Dominguez, MT (2014)]

* [he double logs can be absorbed in a renormalization of the transport
coefficient



The LPM effect on the back of the envelop

e [he energy spectrum of photons caused by the propagation
of a relativistic charge in a medium is suppressed due to
coherence effects (Landau-Pomeranchuk Migdal 1953)

e [he radiation formation time, together with transverse
momentum broadening define the LPM time scale
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The LPM effect on the back of the envelop

e During the formation time multiple scattering centers
act coherently. This yields the suppression of the
spectrum in the UV which corresponds to large

formation times
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Dokshitzer, Mueller, Peigné, Schiff (1995-2000) Zakharov (1996)

e Mean radiative energy loss scales with the square of
the medium length
1/

d
AF,..q ~ /dww_— ~ agGL~
dw




dI'/dk

Medium-Induced gluon radiation

e Difficult to solve. Numerical solutions
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ute medium or hard radiation
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e Novel analytic approach: Opacity expansion around HO to

account for both regimes

YMT (2019)
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The LPM effect on the back of the envelop

Medium-induced gluon spectrum for w,. = nL* = 22.5 GeV

L=3fm §{~14GeV?/fm
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Medium-induced turbulent cascade

e Multiple scattering trigger abundant soft gluon radiation

d2Prad Cj [Baier, Dokshitzer, Mueller, Peigné, Schiff
W ~ (g CR — (1995-2000) Zakharov (1996) Wiedemann (2000)
dwdz W Arnold, Moore, Yaffe (2002), Gyulassy, Levai, Vitev

(2000) Guo, Wang (2000)]

e |arge angle cascade for w ~ a;qL? < pr — minijet thermalization

g [Blaizot, lancu, MT (2013), lancu, Wu (2015) |
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Missing pT in dijet events

e Energy flows from high to low frequencies without accusation: efficient

mechanism for energy transport to large angles Blaizot, MT, Torres (2014)
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— Energy is recovered at large angles in soft particles 40705 415
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Medium response

e Similar effect obtained by assuming direct energy deposition in the
plasma: hydrodynamic response, linear Boltzmann

e Medium excitation correlated with the jet: may cause
enhancement of soft radiation inside the jet
Hydro response
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T. Luo, S. Cao, Y. He, X.-N. Wang (2018)

Wang, Wei, Zhang (2017)

Y. Tachibana, N.-B. Chang, G.-Y. Qin (2017)

e However, radiative processes dominate at low occupancy.
Baier, Mueller, Schiff, Son (2001) Arnold, Moore, Yaffe (2002)
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Color decoherence of jet substructure

» The jetis composed of many partons as it traverses the plasma — It

IS tempting to assume that jet constituents interact independently with
the plasma.

» However, interactions are not point-like: the medium resolves
transverse distance of order

lned ~ k7~ (Gt)~1/?




Color decoherence

» Comparing the medium resolution scale to the transverse size of a
partonic fluctuation defines a new time scale

lmed ~ kJ__l ~ (Cjt)_l/Q <L r; ~0t

» The medium resolves jet substructure (subjets) when 0 > 0.~ (qL)™'"
ta ~ (G573 < L

lancu, Casalderrey-Solana (2011)

-7 MT, Salgado, Tywoniuk (2010-11)
(é)é MT, Tywoniuk (2017)

The decoherence time: 14

» Radiation intensity is proportional to the number of resolved color charges
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Probabilistic picture and MC prescription (vacuum)

» Lund plane: Representation of the phase space of parton shower within jets
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Probabilistic picture and MC prescription (vacuum)

» Lund plane: Representation of the phase space of parton shower within jets

In z6

as(k)Cr
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Jet substructure observables define lines on the Lund plane



Probabilistic picture and MC prescription (in-medium)

formation time: ¢y = (w92)_1
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In z60
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Probabilistic picture and MC prescription (in-medium)

formation time:  t; = (w?)~!

A

In z6

L
Splitting inside the medium: ty < L




Probabilistic picture and MC prescription (in-medium)

formation time:  t; = (wh*)~*

A

In z6

L
Splitting inside the medium: ty < L

oroutside: ¢y > L

1 Vacuum cascade
> In — outside the medium




Probabilistic picture and MC prescription (in-medium)

formation time:

A

ty = (wh?)~

In z0
~1/3
L
pTR1/3
1
] 1
N OrRL | v In =
| ! | ! ’
—_— n —_—
11 R 90

L
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Unmodified substructure,
energy loss sensitive to total
color charge (parent parton)



Probabilistic picture and MC prescription (in-medium)

formation time:  t; = (wh*)~*

In z6
L
(1) Unresolved in medium splitting
s tqg > L
q
In prR1/3 (2) Resolved vacuum splitting
iInside the medium
Iy 1 bty <tqg <L
prRL > 111 5
In 1 In Hi Resolved subjects lose
¢ energy independently
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Probabilistic picture and MC prescription (in-medium)

[Andrews et al (2018)]
formation time:  t; = (wh*)~*

In z60
L
(1) Unresolved in medium splitting
s tqg > L
q
n prR/3 (2) Resolved vacuum splitting
Inside the medium
L 1 tr <tq <L
pTRL - > ln —
| 1 | 1 0 (3) Medium-induced radiation
1l — 11 —
£ O ta <tr <L
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Monte Carlo Event Generators and data

» Several Monte Carlo event generators in the market: JEWEL, Q-Pythia,
MARTINI, CoLBT, LBT, Hybrid, MATTER (some available in a common
platform, JETSCAPE) — More or less successful in describing
substructure observables...do not account for color coherence yet

» Tension in the cone size dependence of Raa Hints of color coherence?
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Higher order corrections to the jet spectrum

gluon + quark energy loss > quark energy loss

In z0
Phase space for resolved subjects  Sudakov suppression of jets due to jet

ty <tq <L substructure fluctuations

\\\\\%}

R 2 R
Raa ~ Qiot(pr) X €xp {—264 In — (ln pr + —1In —>]

0. w. 3 0,
prRL - > ln% MT, Tywoniuk (2018)
1 1
In — In -
"R . Note: ¢ sets the boundary between
Lund Plane color coherence and decoherence
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Higher order corrections to the jet spectrum
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Sensitivity of the nuclear modification factor to color coherence
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Softening of Fragmentation Function

» A softening of the Fragmentation function observed in the data

MT, Tywoniuk (2014)
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» Possible mechanism: in-cone decoherent vacuum radiation
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» Other explanation: medium response
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Summary and outlook

Y. Mehtar-Tani

QCD jet evolution in the presence of a QGP is multifaceted: in
addition to the vacuum collinear cascade a medium induced
shower responsible for jet quenching forms at large angles

Jets in HIC are probes of the QGP and constitute a unique tool
to study QCD far-from-equilibrium and thermalization

QCD coherence phenomena such as the LPM effect and color
(de)coherence play an important role in jet quenching and may
be more directly investigated with substructure observables

A plethora of MC event generators encoding different physics. A
common picture of the perturbative component of jet evolution
in a QGP remains to be achieved — Need analytic guidance to
reduce dependence on modeling
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