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At this meeting there is no need to do introduction to why do the Beam Energy Scan

but perhaps some words about why nucleon clustering?

With or without QCD critical point,  
we expect sigma meson spectral density  
strongly modified by the chiral transition

The nuclear forces are 
extremely well tuned:

 two subsequent 
cancellations

(i)  sigma vs omega 
(attraction versus repulsion)
and (ii) kinetic vs potential 

energies
result in

small binding (0-16 MeV) 
from light to heavy nuclei

Spectral Functions for the Quark-Meson Model Phase Diagram from the Functional Renormalization Group, 
Nils Strodthoff, Lorenz von Smekal, Jochen Wambach  Phys.Rev. D89 (2014) no.3, 034010 arXiv:1311.0630
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FIG. 4: (color online) The meson screening masses, the quark mass and the chiral order parameter, �0 ⌘ f⇡, are shown vs.
temperature T at µ = 0MeV (left panel), and vs. quark chemical potential µ at T = 10MeV (right panel).

The dominant channel a↵ecting the sigma spectral
function is the decay into two pions, �0 ! ⇡⇡, which is
possible for ! � 2m⇡. This process leads to a strong in-

crease of the imaginary part of �(2),R
� (!) at ! & 275MeV,

even before the zero-crossing of the real part at ! ⇡
340MeV. At external energies larger than 2m the
�
0 !  ̄ channel opens up but yields only small contribu-

tions compared to the decay into two pions. The process
�
0 ! �� can only occur at external energies larger than

2m�, i.e. beyond 1GeV, which are not shown in Fig. 5.
When going to higher temperatures the process

⇡
0
⇡ ! �, which describes the scattering of an o↵-shell

pion with a pion from the heat bath resulting in the
formation of a sigma meson, becomes less suppressed
and contributes to the pion spectral function for ! 
m� � m⇡. Since the di↵erence between the meson and
pion screening masses continuously decreases with higher
temperature at µ = 0MeV, cf. Fig. 4, the maximum ex-
ternal energy up to which this process is possible is also
shifted to smaller values, as is the corresponding bump
of the pion spectral function, cf. Fig. 5.

Another e↵ect induced by the temperature depen-
dence of the meson and quark masses is the emergence
of a stable sigma meson at temperatures close to the
crossover temperature, where neither the decay into two
pions nor into two quarks is energetically possible. At
T = 150MeV we therefore observe a pronounced peak in
the sigma spectral function at ! ⇡ 280MeV, originating

from a zero-crossing of the real part of �(2),R
� (!). When

increasing the temperature further, the quarks become
the lightest degrees of freedom considered here, provid-
ing decay channels for both the pion and the sigma meson
down to small external energies and leading to a broad-
ening of the pronounced peaks in the spectral functions.

At T = 250MeV, the meson screening masses are
nearly degenerate and have increased to about 400MeV,
thus shifting the threshold for decays into mesons to twice
that value. Additionally, the quark mass has further de-
creased, to approximately 30MeV, leading to a broad
maximum in the almost degenerate sigma and pion spec-

tral functions. These e↵ects of chiral symmetry restora-
tion agree qualitatively with other studies, e.g. [60] where
mesonic spectral functions were studied at finite tempera-
ture within an O(N) model using optimized perturbation
theory.
The right column of Fig. 5 shows the sigma and pion

spectral function at a fixed temperature of T = 10MeV
and di↵erent values of the quark chemical potential, cor-
responding to points on a horizontal line in the phase
diagram near the critical endpoint. We note that con-
tributions to the pion spectral function arising from the
process ⇡0

⇡ ! � are negligible at such low temperatures
and are therefore not indicated in these figures. Over a
wide range of chemical potentials the spectral functions
remain basically unchanged, as expected from the afore-
mentioned Silver Blaze property. Between µ = 0 and
µ = 200 MeV the results are practically identical (com-
pare the top left and top right panels in Fig. 5). When
approaching the critical endpoint, however, especially the
sigma spectral function undergoes significant changes.
At µ = 292MeV, i.e. only about 1MeV from the

critical endpoint, the sigma screening mass has already
dropped to about half its vacuum value, leading to a
minimal energy for the �0 ! �� decay of ! � 2m� ⇡
540MeV. Additionally, a pronounced sigma peak starts
to develop at ! ⇡ 290MeV, indicating the formation of
a stable dynamical sigma meson, cf. Appendix A.

Even closer to the CEP, i.e. at µ = 292.8MeV, the
threshold for the two-sigma decay has decreased to ! ⇡
290MeV and thus occurs already at smaller energies than
the �0 ! ⇡⇡ process. The sigma pole mass, given by the
location of the sharp peak in the sigma spectral function,
has also decreased considerably, taking a value of mp

� ⇡
140MeV, still in very good agreement with its screening
mass at this point.

At µ = 292.97MeV, however, the sigma pole mass
has already decreased to m

p
� ⇡ 20MeV, whereas the

�
0 ! �� threshold, as determined by the screening mass

here, lags behind. Because the � screening mass changes
very rapidly close to the endpoint, cf. Fig. 4, the di↵er-
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FIG. 5: (color online) Sigma and pion spectral function, ⇢�(!) and ⇢⇡(!), are shown versus external energy ! at µ = 0MeV but
di↵erent T (left column) and at T = 10MeV but di↵erent µ (right column). Inserted numbers refer to the di↵erent processes
a↵ecting the spectral functions at the so indicated values of !. 1: �0 ! ��, 2: �0 ! ⇡⇡, 3: �0 !  ̄ , 4: ⇡0 ! �⇡, 5: ⇡0⇡ ! �,
6: ⇡0 !  ̄ . See text for details.

multi-neutron systems are all unbound
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The setting: the Walecka model sigma and omega exchanges only (isospin-
neutral)

Baryonic clustering at the critical line and near the hypothetical critical point in high

Energy Heavy Ion Collisions

Edward Shuryak and Juan M. Torres-Rincon
Department of Physics and Astronomy, Stony Brook University, Stony Brook NY 11794-3800, USA

We study clusterization of baryons at the freezeout stage of heavy ion collisions.

I. INTRODUCTION

A. The near-critical fluctuations in heavy ion
collisions

The topic of this paper are phenomena happening at
the final, or the so called freezeout stage of heavy ion col-
lisions. The observed yields of many types of secondaries,
from the lightest mesons ⇡,K to baryons and hyperons
and even light nuclei up to d, t,4 He, are well described by
thermal model. With only three parameters – the chemi-
cal freezeout temperature Tch, the baryon number chem-
ical potential µB , and the total volume Vtot – those yields
are described in a very wide range of collision centralities
and energies. Furthermore, since the empirical values of
those are close to the phase boundary line defined on the
lattice, there is little doubt that excited matter enters
the hadronic phase in a well equilibrated form.

However, as multiple studies of the kinetics near the
phase transitions indicated, there is the so called “critical
slowdown” phenomenon, due to which the assumption
of complete equilibration may not be valid for certain
critical modes.

Furthermore, on the T, µB phase diagram of hadronic
matter there are two types of critical phenomena:
(i) the crossover line, which would be a second order line
(of O(4) universality class) if quarks be massless;
(ii) the hypothetical second order critical point at cer-
tain Tc, µc, of Ising universality class. The search for it,
using enhanced fluctuations as proposed in Refs [1, 2], is
currently performed at RHIC, via the beam energy scan.

toward its lowest energies, and even to use STAR de-
tector in a fixed target mode, which is currently under
way. While we do not discuss in this paper the STAR
data from the scan in detail, we do focus on one impor-
tant finding: a strong growth of kurtosis of the proton
distribution near mid-rapidity, at the lowest collision en-
ergies.

While the specific critical enhancement of the multi-
particle fluctuations remain the major goal of this pro-
gram, one needs to study also other phenomena which
can lead to those. In this paper we focus on the cluster-
ing of baryons due to their attractive interaction. As we
detail below, significant clustering should in fact occur
due to the usual nuclear forces.

The temperatures of the hadronic phase, ranging from
Tc ⇡ 155MeV down to kinetic freezeout temperature of
baryons Tf ⇡ 100MeV , may appear large compared to
mean nuclear potential ⇠ 50MeV . But the binary po-

tential itself has minimum at |V | ⇠ 100MeV and clus-
tering of several baryons make this value several times
larger. As a result, clusters of trapped baryons would be
produced.

B. The baryonic interaction in the Walecka model

In this subsection we remind the reader a simplified
form of nuclear forces, following a popular model by Serot
and Walecka [4], to be used and modified below. One im-
portant simplification is that it includes only the isoscalar
mesons, scalar � and vector !, so there is no di↵erence
between coupling to protons and neutrons.
Its Lagrangian density is

L =
1

2
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where Abelian field strength of the vector field Fµ⌫ ⌘

@µV⌫ � @⌫Vµ is the same as in electrodynamics. There
are thus three fields, Dirac nucleons  , vector omega-
mesons Vµ and scalar sigma meson �, interacting with
each other in relativistically invariant way. Their masses
are considered to be an input.
The resulting static potential is

Ṽ (r) = �
g2�
4⇡r

e�m�r +
g2!
4⇡r

e�m!r (2)

The coupling values selected by Serot and Walecka [4]
are
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Note that the ! coupling is stronger, thus dominating at
small distances. Note further that these two terms nearly
cancel each other, leaving us with a relatively shallow po-
tential, V < 100MeV ⇠ mN/10, see Fig.1 Note further
that the coupling are selected not to fit the binary scat-
tering phases and deuteron binding, as done for all other
phenomenological potentials, but from the fit to nuclear
matter in the mean field approximation.
Considering the case of infinite homogeneous matter of

density n and ignoring correlations between the nucleons,
one get the mean potential energy

hP i = (
n

2
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+
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FIG. 1: The e↵ective nuclear potentials (MeV), in the vac-
uum (black solid line) and a modified one at the freezeout
conditions (blue dashed line).

and thus clustering is relatively modest.
There are however two important regimes in which

this simple conclusion can be reversed, and rather large
correlations can be achieved. One regime is when one
important ingredient of the phenomenological potential,
the e↵ective mass of the � meson, is strongly reduced
because of closeness of chiral symmetry restoration at
T > Tc ⇡ 155 MeV. According to studies of chiral tran-
sition at µ = 0 [? ], and discussion in our previous pa-
per [4], the initial NN potential the � mass can be re-
duced from 500 MeV down to m� ⇠ 285 MeV. As shown
in Fig. 1 this modification results in crucial changes of
the e↵ective potential, inverting the situation to

|V (rmin)|

T
⇠ 2 � 3

This situation becomes more evident in the vicinity of the
QCD critical point (if it exists), since the critical mode
becomes really light, making appear long-range forces as-
sociated with its exchange.

These larger Boltzmann factors exp(|V (rmin)|/T ) play
much more important role when several nucleons are in-
volved. For example, the N = 4 nucleons we will discuss
have six relative potentials, in a (tetrahedral) pre-cluster,
so the Boltzmann factor enters in the sixth power. Of
course, the Boltzmann factor is just classical thermody-
namics, and one needs to include also quantum e↵ects,
expected to reduce the correlations. This is the question
we focus on in this paper.

More specifically, we focus on 4-nucleon pre-clusters of
the ppnn (or alpha-particle) type. Only in this case one
may think of all four particle as distinguishable (all in
di↵erent spin-isospin states), without account for e↵ects
of Fermi-Dirac statistics. Respectively, its ground state is
the only light nuclei which is relatively strongly bound. It

is well known that 12C, 16O and perhaps even 24Mg have
strong alpha-particle correlations, and their lowest states
are consistent with few-alpha-particle Bose-Einstein con-
densation [5].

II. SEMICLASSICAL THEORY AT FINITE
TEMPERATURE

A. New version of semiclassical theory, at zero
temperature

Semiclassical approximations are well-known tools,
both in quantum mechanics and quantum field the-
ory. Standard textbooks of quantum mechanics usually
start with Bohr-Sommerfeld quantization conditions, and
semiclassical Wentzel-Kramers-Brillouin (WKB) approx-
imation for the wave function. Unfortunately, extending
such methods beyond the one-dimensional case (or mul-
tidimensional with separable variables) proved to be dif-
ficult. Also already the first WKB correction to classical
term, 1/

p
p(x) is not correct and contains an unphysical

singularity at the turning point.

B. Analytic methods of few-body physics at finite
temperature

Standard textbook definition of the density matrix

P (x0) =
X

i

| i(x0)|
2 e�Ei/T (2)

suggest to find all states and their wave functions, and
then do weighting with the Boltzmann factor. Needless
to say, it is rarely possible to use this definition in prac-
tice. In this work we will follow this approach twice:
for the two nucleon problem in section IV A, with large
set of solutions to Schŕ’odinger equation for relative mo-
tion, and in Sec. IV B, with solutions to e↵ective radial
equation in K-harmonics method applied to 4He. This
last method goes back to 1960’s,when it was applied to
the ground states of light nuclei. Our finding of the sec-
ond bound state in 4He and more general use of it to
finite-temperature clustering problem is (to our knowl-
edge) new.

As shown by Feynman, the density matrix for any
quantum system can be expressed by the path integrals,
over paths passing through the point x0. Analytic con-
tinuation to Euclidean (Matsubara) time defined on a
circle ⌧ 2 [0,� = ~/T ] lead to its finite temperature gen-
eralization

P (x0) =

Z
Dx(t)e�SE [x(⌧)] , (3)

taken over the periodic paths which starts and ends at
x0. This expression has led to multiple applications, per-
turbative (using Feynman diagrams) or numerical (e.g.

effective 
sigma mass 
is 285 MeV 
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In this subsection we remind the reader a simplified
form of nuclear forces, following a popular model by Serot
and Walecka [4], to be used and modified below. One im-
portant simplification is that it includes only the isoscalar
mesons, scalar � and vector !, so there is no di↵erence
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where Abelian field strength of the vector field Fµ⌫ ⌘

@µV⌫ � @⌫Vµ is the same as in electrodynamics. There
are thus three fields, Dirac nucleons  , vector omega-
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Note that the ! coupling is stronger, thus dominating at
small distances. Note further that these two terms nearly
cancel each other, leaving us with a relatively shallow po-
tential, V < 100MeV ⇠ mN/10, see Fig.1 Note further
that the coupling are selected not to fit the binary scat-
tering phases and deuteron binding, as done for all other
phenomenological potentials, but from the fit to nuclear
matter in the mean field approximation.
Considering the case of infinite homogeneous matter of

density n and ignoring correlations between the nucleons,
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FIG. 1: The e↵ective nuclear potentials (MeV), in the vac-
uum (black solid line) and a modified one at the freezeout
conditions (blue dashed line).

and thus clustering is relatively modest.
There are however two important regimes in which

this simple conclusion can be reversed, and rather large
correlations can be achieved. One regime is when one
important ingredient of the phenomenological potential,
the e↵ective mass of the � meson, is strongly reduced
because of closeness of chiral symmetry restoration at
T > Tc ⇡ 155 MeV. According to studies of chiral tran-
sition at µ = 0 [? ], and discussion in our previous pa-
per [4], the initial NN potential the � mass can be re-
duced from 500 MeV down to m� ⇠ 285 MeV. As shown
in Fig. 1 this modification results in crucial changes of
the e↵ective potential, inverting the situation to

|V (rmin)|

T
⇠ 2 � 3

This situation becomes more evident in the vicinity of the
QCD critical point (if it exists), since the critical mode
becomes really light, making appear long-range forces as-
sociated with its exchange.

These larger Boltzmann factors exp(|V (rmin)|/T ) play
much more important role when several nucleons are in-
volved. For example, the N = 4 nucleons we will discuss
have six relative potentials, in a (tetrahedral) pre-cluster,
so the Boltzmann factor enters in the sixth power. Of
course, the Boltzmann factor is just classical thermody-
namics, and one needs to include also quantum e↵ects,
expected to reduce the correlations. This is the question
we focus on in this paper.

More specifically, we focus on 4-nucleon pre-clusters of
the ppnn (or alpha-particle) type. Only in this case one
may think of all four particle as distinguishable (all in
di↵erent spin-isospin states), without account for e↵ects
of Fermi-Dirac statistics. Respectively, its ground state is
the only light nuclei which is relatively strongly bound. It

is well known that 12C, 16O and perhaps even 24Mg have
strong alpha-particle correlations, and their lowest states
are consistent with few-alpha-particle Bose-Einstein con-
densation [5].

II. SEMICLASSICAL THEORY AT FINITE
TEMPERATURE

A. New version of semiclassical theory, at zero
temperature

Semiclassical approximations are well-known tools,
both in quantum mechanics and quantum field the-
ory. Standard textbooks of quantum mechanics usually
start with Bohr-Sommerfeld quantization conditions, and
semiclassical Wentzel-Kramers-Brillouin (WKB) approx-
imation for the wave function. Unfortunately, extending
such methods beyond the one-dimensional case (or mul-
tidimensional with separable variables) proved to be dif-
ficult. Also already the first WKB correction to classical
term, 1/

p
p(x) is not correct and contains an unphysical

singularity at the turning point.

B. Analytic methods of few-body physics at finite
temperature

Standard textbook definition of the density matrix

P (x0) =
X

i

| i(x0)|
2 e�Ei/T (2)

suggest to find all states and their wave functions, and
then do weighting with the Boltzmann factor. Needless
to say, it is rarely possible to use this definition in prac-
tice. In this work we will follow this approach twice:
for the two nucleon problem in section IV A, with large
set of solutions to Schŕ’odinger equation for relative mo-
tion, and in Sec. IV B, with solutions to e↵ective radial
equation in K-harmonics method applied to 4He. This
last method goes back to 1960’s,when it was applied to
the ground states of light nuclei. Our finding of the sec-
ond bound state in 4He and more general use of it to
finite-temperature clustering problem is (to our knowl-
edge) new.

As shown by Feynman, the density matrix for any
quantum system can be expressed by the path integrals,
over paths passing through the point x0. Analytic con-
tinuation to Euclidean (Matsubara) time defined on a
circle ⌧ 2 [0,� = ~/T ] lead to its finite temperature gen-
eralization

P (x0) =

Z
Dx(t)e�SE [x(⌧)] , (3)

taken over the periodic paths which starts and ends at
x0. This expression has led to multiple applications, per-
turbative (using Feynman diagrams) or numerical (e.g.

effective 
sigma mass 
is 285 MeV 



Our first paper was based on general study of clustering: 
globular clusters in Galaxies,  

kinetics near liquid-gas transition 
 snow production etc 

using rather simple tool, 
classical Molecular dynamics 

(excellent way to study out-of equilibrium situations) 

Our second paper  was about quantum effects 
in equilibrium clustering: 

(i) semiclassical “flucton” method at finite T; 
       (ii) QM with hyper spherical coordinates for He4; 
       (iii) path integral Monte-Carlo ;

So, whether the particular effects we discuss 
do or do not happen in real life, 

we worked out interesting methodical tools…



Semiclassical approach to clusters:  
flucton paths at nonzero T in equilibrium 

(first developed by Turbiner and ES in quantum mechanics 
Unlike WKB works in multimentional cases  

And corrections are down by Feynman diagrams 
Where for several problems calculated up to 3 loops

3

As it is well known, see e.g.[3], one can also apply these
expressions in statistical mechanics. For this one needs
to change time into its Euclidean version ⌧ = i t defined
on a circle with circumference � = ⌧tot. Such periodic
time is known as the Matsubara time, and the density
matrix of quantum system is related to probability for
thermal system with temperature

T = ~/� . (9)

At T ! 0 the ground state of the quantum system is
naturally recovered. Periodicity of the path implies that
there is only one endpoint xi = xf = x0.

The main object of our study is the diagonal matrix
element of the density matrix, giving the probability for
the specific coordinate value x0 (or a particular field con-
figuration �0(~x) in QFT) in this ensemble

P (x0,�) = N

Z x(�)=x0

x(0)=x0

Dx(⌧)e�SE [x(⌧)]/~
. (10)

So, we take into account all (closed) trajectories starting
and ending at x0. Here the weight is defined via the
Euclidean action

SE =

Z �

0
d⌧


m

2

✓
dx

d⌧

◆2

+ V (x)

�
.

Using standard definition of the density matrix in terms
of stationary states | ni with energy En, the sum over
states becomes a set of decreasing exponentials

P (x0,�) =
X

n

| n(x0)|
2
e
�En� . (11)

In the limit of large � or low temperature T , in the ex-
pression (11) the dominant term

P (x0,� ! 1) ⇠ | 0(x0)|
2

e
�E0� , (12)

describes the ground state, the main state we are inter-
ested in.

B. The classical path - flucton

We assume for simplicity that the potential (2) has a
global minimum at x = 0,

V (x) � 0 and
d

d x
V |x=0 = 0 .

thus, the exponent in (11) is non-negative, SE � 0.
In Euclidean time ⌧ the kinetic energy changes sign,

which is equivalent to the potential e↵ectively flipping
sign, V (x) ! �V (x), turning a minimum into a maxi-
mum. Now, let us ask if there exist a real path, starting
at some arbitrary point x0 at ⌧ = 0 and returning to it
after the required time duration, at the Matsubara time
⌧ = �. The lowest action path of this kind is the classical
path we call flucton. Its energy is defined by its period.

Since in this work we deal only with quantum mechan-
ical limit of vanishing temperature T ! 0, the Matsub-
ara time goes to infinity. It is clear then that the particle
should spend a divergently long time near the turning
point, which is the case when xt ! 0, the location of
the maximum of �V , see Fig.1. Evidently, such classi-
cal path with infinite period is the one with zero energy
E = 0. The basic idea is that such classical path with
zero energy E = 0 ”climbs up the hill” to its maximum
at x = 0.

x

-V(x)
x0xt

FIG. 1: The sketch of the inverted potential �V versus co-

ordinate x. Flucton is the classical trajectory starting and

ending at the same initial point x0. At non-zero tempera-

ture it goes through the turning point xt, see text. At zero

temperature xt coincides with the location of the maximum,

xt = 0.

Let us find the flucton paths explicitly. They, of course,
satisfy the second order classical Equation Of Motion
(EOM), but in the one-dimensional case it is much easier
to use the energy conservation, at E = 0

d

d⌧
x(⌧) =

p
2 V (x) . (13)

The circular trajectory emerging in (13) which starts and
ends at x0 passing through x = 0 for the time � is called
a flucton [6],

xflucton(0) = xflucton(�) = x0 ,

xflucton = xflucton(⌧ ; x0, �) .

It enables us to evaluate the transition amplitude
P (x0,�) (10). Putting

�(x0 ,�) ⌘ � log[P (x0,�)] ,

in (12) and expanding the classical action around the
flucton we obtain

�(x0 ,�) =

Sflucton +
1

2
log(N�2 det(Oflucton)) + loops , (14)

Density matrix dominated by  
flucton paths  

which  should have correct period

� =
~
T
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lattice gauge theory). This is so well known that any
references are not needed.

Another interesting usage of this expression is devel-
opment of a novel semiclassical theory. Its main idea
is that in certain conditions the path integral is dom-
inated by minimal action (classical) path, called “fluc-
ton”. The idea was introduced in [7]. (Also it was in-
dependently suggested later in [8].) Unlike WKB, this
approach works for multidimensional and QFT settings.
It also leads to systematic perturbative series based on
Feynman diagrams, with clear rules for each order.

Systematic application of this method at zero temper-
ature (� ! 1) for a number of quantum mechanical
problems has been developed in [9–11]. The quantum
corrections have been calculated to 3 loops, and shown
to be in exact agreement with asymptotics of the ground
state wave functions. All details the reader can find in
these references: some of these results for anharmonic
oscillator we will use in the next section.

�V (x)

x

x0
xturn

x0

xturn

⌧ = 0⌧ = ±�/2

�V (x)

x

x0
xturn

x0

xturn

⌧ = 0⌧ = ±�/2

FIG. 2: Two sketches explaining properties of the flucton
classical paths. The upper one shows the (flipped) potential
�V (x) versus its coordinate. The needed path starts from
arbitrary observation point x0 (red dot), goes uphill, turns
back at the turning point xturn (blue dot), and returns to x0

during the required period � = ~/T . The lower plot illustrate
the same path as a function of Euclidean time ⌧ defined on a
“Matsubara circle” with circumference �.

At T = 0 quantum systems are in their ground states,
and therefore studies of the density matrix are related to

semiclassical description of the ground state wave func-
tions. It has been shown in the above mentioned papers
how path integral semiclassical higher order corrections
correspond to the asymptotic expansion of solutions to
Schŕ’odinger equation.

At finite temperatures the path integral is modified,
but it can still be dominated by certain classical “flucton”
paths. They should:

(i) be still periodic, starting and ending at the desig-
nated observation point x0;

(ii) have a specific time period in ⌧ , the “Matsubara
time”, related to the temperature by � = ~

T .

In Fig.2 we provide two sketches explaining how these
paths look like.

In this Introductory section, let us show how this
method works for the harmonic oscillator, with the Eu-
clidean action

SE =

I
d⌧

✓
ẋ2

2
+

x2

2

◆
, (4)

where three mechanical units are chosen to have ~ = m =
! = 1. The dot indicate derivative over the Euclidean
time ⌧ = it, and the circle at the integral reminds us
that it is defined on a Matsubara circle. Note that the
sign of the potential in the action is inverted, which is
the consequence of i2 = �1 in the kinetic term.

The flucton is a classical path which: (i) passes through
some arbitrary point x0; and (ii) is periodic with the
period �. Because in Euclidean time the potential is
inverted, the particle is “sliding” from the maximum
at x = 0 to ±1. Most applications before were at
T = 0, � = 1 and the slide was always started from
the maximum, at zero energy.

Now, at nonzero T , such slides also starts with zero
velocity but from a certain “turning point” xturn and
proceed to x0. The turning point, by symmetry, should
be separated from the x0 be the time equal to half period
�/2. For any one-dimensional motion there is no need to
use the Newton equation of motion. Expressing velocity
from energy conservation on the path, this condition can
be put into the general form

�

2
=

Z x0

xturn

dxp
2(V (x) + E)/m

. (5)

For oscillator, with V = x2/2, it is easy to find the turn-
ing point by solving

E = V (xturn) =
x2

turn

2
, (6)

and calculate the integral for the period

�

2
= arccosh

✓
x0

p
2E

◆
(7)
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The classical flucton path is therefore given by

xfluc(⌧) = x0

cosh(⌧ � �/2)

cosh(�/2)
(8)

and both at ⌧ = 0 and ⌧ = � it returns to the desired
point x0. Now, substituting it to the action one finds
that

S[xfluc(⌧)] = x2

0
tanh

✓
�

2

◆
(9)

and the density matrix is therefore Gaussian at any tem-
perature

P (x0) ⇠ e�x2
0 tanh( �

2 ) . (10)

This reproduces the result obtained by Feynman [12] via
explicit calculation of Gaussian path integral. As it hap-
pens for any Gaussian path integral, this semiclassical
formulae is in fact exact.

III. SEMICLASSICAL THEORY AT FINITE
TEMPERATURE

A. Fluctons for anharmonic oscillator at T 6= 0
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The tactics used in the previous example is not easy
to implement: in particularly, the period condition (4)
defining the energy E needs to be solved numerically for
each value of the x0. Furthermore, using energy conser-
vation leads naturally to ⌧(x) representation of the path,
rather than conventional x(⌧).

After trying a number of strategies, we concluded that
the simplest way to solve the problem is:

(i) solve numerically the second order EOM, starting
not from the observation point x0 but from the
turning point xturn. It is easier because here the ve-
locity vanish ẋ = 0 and numerical solver can readily
be used;

(ii) follow the solution for half period �/2 and thus find
the location of x0 = x(⌧ = �/2);

(iii) calculate the corresponding action and double it,
to account for the other half period.

The details of this procedure and its comparison with
the numerical results based on the definition Eq.(1) for
the anharmonic oscillator we include in a separate me-
thodical paper [? ]: here we only present one plot
Fig. 3 comparing the summation over 60 wave functions,
squared and Boltzmann weighted (line), with the result

of the flucton method (points). For additional compari-
son we also present the numerical results of a path inte-
gral Monte Carlo calculation with the same parameters
which simulates quantum paths of one particle in the an-
harmonic oscillator potential. The method is inspired by
the nice review [? ].
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As a semiclassical approach one expects that the fluc-
ton solution works better when the action is large, i.e.
for large values of x0. However, one observes that the
flucton systematically overestimates the solution based
on the Schroedinger solution. Part of the discrepancy
might come from normalization issues as described in [10]
so it is more sensible a comparison of the logarithmic
derivative to remove those. In the bottom panel of Fig. 3
we show the logarithmic derivative of the density matrix
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FIG. 1: The e↵ective nuclear potentials (MeV), in the vac-
uum (black solid line) and a modified one at the freezeout
conditions (blue dashed line).

and thus clustering is relatively modest.
There are however two important regimes in which

this simple conclusion can be reversed, and rather large
correlations can be achieved. One regime is when one
important ingredient of the phenomenological potential,
the e↵ective mass of the � meson, is strongly reduced
because of closeness of chiral symmetry restoration at
T > Tc ⇡ 155 MeV. According to studies of chiral tran-
sition at µ = 0 [? ], and discussion in our previous pa-
per [4], the initial NN potential the � mass can be re-
duced from 500 MeV down to m� ⇠ 285 MeV. As shown
in Fig. 1 this modification results in crucial changes of
the e↵ective potential, inverting the situation to

|V (rmin)|

T
⇠ 2 � 3

This situation becomes more evident in the vicinity of the
QCD critical point (if it exists), since the critical mode
becomes really light, making appear long-range forces as-
sociated with its exchange.

These larger Boltzmann factors exp(|V (rmin)|/T ) play
much more important role when several nucleons are in-
volved. For example, the N = 4 nucleons we will discuss
have six relative potentials, in a (tetrahedral) pre-cluster,
so the Boltzmann factor enters in the sixth power. Of
course, the Boltzmann factor is just classical thermody-
namics, and one needs to include also quantum e↵ects,
expected to reduce the correlations. This is the question
we focus on in this paper.

More specifically, we focus on 4-nucleon pre-clusters of
the ppnn (or alpha-particle) type. Only in this case one
may think of all four particle as distinguishable (all in
di↵erent spin-isospin states), without account for e↵ects
of Fermi-Dirac statistics. Respectively, its ground state is
the only light nuclei which is relatively strongly bound. It

is well known that 12C, 16O and perhaps even 24Mg have
strong alpha-particle correlations, and their lowest states
are consistent with few-alpha-particle Bose-Einstein con-
densation [5].

II. SEMICLASSICAL THEORY AT FINITE
TEMPERATURE

A. New version of semiclassical theory, at zero
temperature

Semiclassical approximations are well-known tools,
both in quantum mechanics and quantum field the-
ory. Standard textbooks of quantum mechanics usually
start with Bohr-Sommerfeld quantization conditions, and
semiclassical Wentzel-Kramers-Brillouin (WKB) approx-
imation for the wave function. Unfortunately, extending
such methods beyond the one-dimensional case (or mul-
tidimensional with separable variables) proved to be dif-
ficult. Also already the first WKB correction to classical
term, 1/

p
p(x) is not correct and contains an unphysical

singularity at the turning point.

B. Analytic methods of few-body physics at finite
temperature

Standard textbook definition of the density matrix

P (x0) =
X

i

| i(x0)|
2 e�Ei/T (2)

suggest to find all states and their wave functions, and
then do weighting with the Boltzmann factor. Needless
to say, it is rarely possible to use this definition in prac-
tice. In this work we will follow this approach twice:
for the two nucleon problem in section IV A, with large
set of solutions to Schŕ’odinger equation for relative mo-
tion, and in Sec. IV B, with solutions to e↵ective radial
equation in K-harmonics method applied to 4He. This
last method goes back to 1960’s,when it was applied to
the ground states of light nuclei. Our finding of the sec-
ond bound state in 4He and more general use of it to
finite-temperature clustering problem is (to our knowl-
edge) new.

As shown by Feynman, the density matrix for any
quantum system can be expressed by the path integrals,
over paths passing through the point x0. Analytic con-
tinuation to Euclidean (Matsubara) time defined on a
circle ⌧ 2 [0,� = ~/T ] lead to its finite temperature gen-
eralization

P (x0) =

Z
Dx(t)e�SE [x(⌧)] , (3)

taken over the periodic paths which starts and ends at
x0. This expression has led to multiple applications, per-
turbative (using Feynman diagrams) or numerical (e.g.

the usual density matrix (line, 60 states)

P (x0) ⇠ exp
�
� SE [xflucton(⌧)]

�

(points on the plot) 
so, the method works very well

(the first time ever) testing the flucton method at finite T 
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and yet we found something new with it…)
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above as a contribution from pre-clusters. Similar e↵ect
for He4/p4 ratio is expected at lower RHIC energies, but
it is not yet observed.

Another proposed signal would be two-body decay
channels of pre-clusters, as an enhancement at low in-
variant mass in, say p + t, dd channels. (We also remind
that pre-cluster decays into 4 protons is presumably the
reason for the large kurtosis of the multiplicity distribu-
tion.)

Another summary is for readers interested in many
body theory. Large part of the paper is methodical de-
velopment, of the semiclassical “flucton” method [7], so
far developed for T = 0 only [9, 10]. We have shown how
to use it for nonzero temperatures. It does work well,
e.g. for standard toy models such as anharmonic oscil-
lator (see Fig.3). The method was applied to 2 and 4
nucleon problem at finite temperatures.

Another (much more traditional) way to calculate the
density matrix is via solving Schroedinger equation for
many levels, and weight them by the Boltzmann factor.
We did so for two nucleons, and, using K-harmonics, for
4 nucleons. The results, shown in Fig.9, show modest
⇠ 1.4 correlation for the unmodified potential, but ⇠ 10
enhancement for the modified one.

The flucton method (see Fig. 5) predicts larger ef-
fects, ⇠ 4 for the unmodified potential, and really huge
enhancement for the modified one. The di↵erence may
be related to the fact that we only calculated the lead-
ing semiclassical part of the 4-nucleon density matrix,
exp(��Sflucton), without the one-loop preexponent (de-
terminant) or other corrections. It may also indicate that
the action is not large enough.

Appendix A: Wave function of 4He using
K-harmonics

The so-called method of K-harmonics was developed
in Ref. [16]. Its main idea is that the multi-dimensional
Schrödinger equation can be treated with some single
“radial” coordinate plus “angular variables”, for which
a complete set of functions is known. Furthermore, in
certain cases rather good approximation can be obtained
using a single lowest angular function, with trivial angu-
lar dependence. Such cases include in particular A = 3
nuclei and also 4He, the case we would discuss here fol-
lowing Ref. [17] . Since these papers are rather old, we
indicate in this appendix their main points.

As a preliminary information, let us note that 4He is a
surprisingly compact nucleus, with r.m.s. radius of only
R(4He) ⇡ 1.6 fm. Its binding may appear to be large
B(4He) = 28.3 MeV, but since there are 6 nucleon pairs
the “binding per pair” is rather small and only about
twice that in the deuteron.

The first standard step in many body physics is the
separation of the center of mass motion from relative co-
ordinates. It is usually done using the Jacobi coordinates,

which for the A = 4 case at hand are

~⇠[1] =
~x[1] � ~x[2]

p
2

, ~⇠[2] =
~x[1] + ~x[2] � 2~x[3]

p
6

,

~⇠[3] =
~x[1] + ~x[2] + ~x[3] � 3~x[4]

2
p

3

The radial coordinate, or hyperdistance, is defined as

⇢2 =
3X

m=1

~⇠[m]2 =
1

4

� X

i 6=j

(~x[i] � ~x[j])2
�

(A1)

The radial part of the Laplacian in these Jacobi coordi-
nates is  00(⇢) + 8 0(⇢)/⇢, and using substitution

 (⇢) = �(⇢)/⇢4 , (A2)

one arrives to conventional-looking Schrödinger equation
for K = 0 harmonics

d2�

d⇢2
�

12

⇢2
��

2M

~2
(W (⇢) + VC(⇢) � E)� = 0 , (A3)

where W is the projection of the potential to this har-
monic. According to [17]

W (⇢) =
315

4

Z
1

0

V (
p

2⇢x)(1 � x2)2x2dx , (A4)

where V is the NN potential.
Using the simplest nuclear potential used in [17] (called

V1 there)

V (r) = �83.34 e�r2/1.62

+ 144.86 e�r2/0.822

, (A5)

with the prefactors given in MeV while the radii in expo-
nent in fm. In Eq. (A3) also appears a Coulomb repulsion
between the two protons, which adds VC = 2.23 MeV·

fm/⇢. The discussion of the solutions of this equation is
given in the main text.

For the application of Eq. (A3) into the semiclassical
flucton solution, it is easy to realize that it is equivalent
to a 1D Schrödinger equation,

�
~2

2M

d2�

d⇢2
+ Veff (⇢)� = E� , (A6)

with the e↵ective potential,

Veff (⇢) = W (⇢) +
12

2M⇢2
+ VC(⇢) . (A7)

Therefore we can apply the standard method described
in the text to obtain the flucton solution to the inverted
potential �Veff . The potentials W (⇢) and Veff (⇢) are
plotted in Fig. 14.
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where V is the NN potential.
Using the simplest nuclear potential used in [17] (called

V1 there)

V (r) = �83.34 e�r2/1.62

+ 144.86 e�r2/0.822

, (A5)

with the prefactors given in MeV while the radii in expo-
nent in fm. In Eq. (A3) also appears a Coulomb repulsion
between the two protons, which adds VC = 2.23 MeV·

fm/⇢. The discussion of the solutions of this equation is
given in the main text.

For the application of Eq. (A3) into the semiclassical
flucton solution, it is easy to realize that it is equivalent
to a 1D Schrödinger equation,
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d⇢2
+ Veff (⇢)� = E� , (A6)

with the e↵ective potential,

Veff (⇢) = W (⇢) +
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2M⇢2
+ VC(⇢) . (A7)

Therefore we can apply the standard method described
in the text to obtain the flucton solution to the inverted
potential �Veff . The potentials W (⇢) and Veff (⇢) are
plotted in Fig. 14.
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above as a contribution from pre-clusters. Similar e↵ect
for He4/p4 ratio is expected at lower RHIC energies, but
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needs to consider separately the centrifugal potential

�V l
rot =

l(l + 1)

2mRr2

for various nonzero values of l = 1, ... (mr = m/2 is
the reduced mass). In order not to deal with continuous
spectrum of scattering states we use a standard method,
put a system in a confining “cup” potential, chosen in a
form

Vcup =

✓
r

Rcup

◆8

, (21)

with large enough Rcup = 10 fm. The original potential
in Eq. (??), while is can lead to reasonable properties for
infinite nuclear matter [4] does not have any bound state.
For the shake of illustration let us reduce the repulsion of
that potential and use ↵! = 9.42, to increase the depth
of the potential.

In summary we solve

�
u00

l (r)

2mR
+ (VNN + Vcup + �V l

rot)ul(r) = Elul(r) , (22)

with u = r (r). Then, we found 20 energies and wave
functions for each l.

The beginning of the energy spectrum at l = 0 is (in
units of fm�1

⇡ 197 MeV)

El=0

i = � 0.0113821, 0.074862, 0.204088, 0.369106,

0.564357, 0.786536, 1.03336, 1.30313, ...

The only bound state is “Walecka deuteron” with an en-
ergy of �2.2 MeV and a r.m.s. of 2.2 fm (remember that
we tuned the repulsive part to get these numbers just for
illustration, the physical deuteron also contains a small
admixture of l = 2 component, which we do not obtain
in this example with a simple radial potential).

Using this set of states one can find quantum-thermal
density matrix

P (r,�) =
X

i,l

(2l + 1)| l,i(r)|
2e��El

i . (23)

Examples at two di↵erent temperatures are shown in
Fig. 7, for T = 100, 20 MeV for di↵erent angular mo-
menta. We sum over the first 20 levels for each value of
l.

B. The lowest K-harmonics and the wave functions
of 4He

While the two-body problem is solvable using the rel-
ative motion of the system, for clusters with A > 2 the
solution is not that straightforward. One would also like
to use a complete set of states, bound and unbound, to
calculate the thermal density matrix for these cases.

FIG. 7: The density matrix (21) at T = 100, 20 MeV, upper
and lower plots respectively. The solid black line for l = 0,
blue dashed and brown dash-dotted lines are for l = 1 and 2.

One interesting possibility is provided by the so called
K-harmonics [16], which we describe briefly in App. A.
In the practice one focuses on the lowest, most symmet-
ric ground states, obtained from 1D radial Schrödinger
equation for the “hyperdistance” ⇢ defined in Eq. (A1)
as a sum over Jacobi coordinates squared. We briefly
indicate in the App. A the derivation of the correspond-
ing Schrödinger-like equation in the case of 4He here we
only note that the squared hyperdistance is related to
r(t) coordinate (we used above for fluctons) via simple
relation

⇢2 =
6

4
r2 . (24)

Solving the eigenvalue problem in App. A we have ob-
tained 40 lowest eigenstates for Eq. (A3) using the sim-
plest potential V1 from Ref. [17] and the Coulomb term
between the two protons. The ground state energy we
find is E0 = �27.8 MeV, very close to the experimental
value of �28.3 MeV.

Rather unexpectedly, we also find a second bound state
(missed in [17]) with energy E1 = �2.8 MeV. To deter-
mine whether this state is physical, we show in Table ??
the excited states of 4He. Among them there is just one
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the excited states of 4He. Among them there is just one

9

0+ state, with a binding energy of

B = �28.3 MeV + 20.2 MeV = �8.1 MeV , (25)

which is not the same as for our second 0+ state, but close
enough to identify them as the same radial excitation
state. The plot of both solutions is shown in Fig. 8.
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FIG. 8: Two radial bound state 0+ wave functions for 4He,
which are solutions of Eq. (A3) as a function of the hyperdis-
tance variable. Their energies are discussed in the text.

At finite temperature, we also use the unbound states
to weight them with the corresponding Boltzmann fac-
tor and calculate the thermal density matrix. The results
are shown in Fig. 9 for T = 100 MeV. In the upper plot
we present the results using the potential V1 given in
Ref. [17]. The solid line is the weighted density matrix
at T = 100 MeV compared to the contribution of the
lowest bound state only (blue dashed line). For this (un-
modified) potential the contribution of excited state to
the density matrix is important as can be seen from the
di↵erence between the two curves.

In order to see what happens if the interaction poten-
tial is medium-modified, we repeat the calculation with
the same form of the potential, but with the coe�cient
of the attractive term double. In this case the minimum
of the potential reaches ⇠ �400 MeV, similarly to what
happens in Fig. 1.

This modified potential now has several radial bound
states: their energies are

E( MeV) = �226.1, �120.1, �52.6, �17.3, �3.4, �0.1 .

The density matrix element and the lowest bound state
wave function squared are shown in the lower panel of
Fig. 9. In contrast to the upper plot, (for unmodified
potential) the lowest state dominates the density matrix.
It is not surprising, since the binding is more than twice
the temperature.

In that figure we can read the magnitude of the cor-
relation, relative to the constant asymptotic distance
(the thermal contribution of propagating positive energy

FIG. 9: Solid lines: Boltzmann-weighted density matrix, at
T = 100 MeV, using 40 lowest states of the K-harmonics
radial equation, for the unmodified nuclear potential V1 used
in Ref. [17] (upper plot) and a modified one (lower plot). In
both cases the blue dashed lines show the contribution of the
lowest bound state.

states) increases from ⇠ 0.4 to ⇠ 12, a huge factor. It is
however expected from our semiclassical calculation, see
e.g. Fig. 5 for similar e↵ect in the two-body case.

V. PRE-CLUSTERS AND PRODUCTION OF
LIGHT NUCLEI

The reader who went that far in the paper must be con-
vinced that pre-clustering of the nucleons does happen in
heavy ion collisions, at the kinetic freezeout time. Fur-
thermore, it is significantly enhanced if the internucleon
potential is modified due to meson mass modification or
appearance of the QCD critical point. Indeed, we stud-
ied this phenomenon in our previous paper [4] by classical
molecular dynamics simulations, and in the previous sec-
tions by semiclassical and PIMC quantum methods.

Before proceeding to the observables, let us start by
reminding once more what we call the “pre-clustering”
phenomenon. It is very important to keep in mind that
the pre-clusters we study are very di↵erent from “nuclear
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TABLE I: Low-lying resonances of 4He system, from BNL
properties of nuclides listed in nndc.bnl.gov web page. JP

is total angular momentum and parity, � is the width. The
last column is the decay channel branching ratios, in percents.
p, n, d correspond to emission of proton, neutron or deuterons.

E (MeV) JP � (MeV) decay modes, in %

20.21 0+ 0.50 p =100

21.01 0� 0.84 n =24, p =76

21.84 2� 2.01 n = 37, p = 63

23.33 2� 5.01 n = 47, p = 53

23.64 1� 6.20 n = 45, p = 55

24.25 1� 6.10 n = 47, p = 50 , d=3

25.28 0� 7.97 n = 48 , p = 52

25.95 1� 12.66 n = 48 ,p = 52

27.42 2+ 8.69 n = 3 , p = 3 ,d = 94

28.31 1+ 9.89 n = 47 , p = 48 , d = 5

28.37 1� 3.92 n = 2, p = 2, d = 96

28.39 2� 8.75 n = 0.2, p = 0.2 , d = 99.6

28.64 0� 4.89 d=100

28.67 2+ 3.78 d=100

29.89 2+ 9.72 n = 0.4 , p = 0.4, d = 99.2

One feature expected would be a peak at small relative
rapidity. In the invariant mass distribution (p1 + p2)2

one also should find low mass enhancement, related to
4-nucleon resonances. While we have not derived those
theoretically, from quantum mechanics, we in fact have
quite a number of them found experimentally. In Table 1
we list 15 such resonances occupying the strip of energies
of the width �E = 10MeV above binding, shown with
their quantum numbers and branching ratios for their
decay modes.

Note that already in this strip the resonances are
strongly overlapping, as the widths and energy di↵er-
ences are comparable. Growing density of states and
widths above this strip makes their separation/discovery
hard. But we are not discussing finding them one-by-one,
but rather a collective near-zero e↵ective mass enhance-
ment.

It is important that their lifetimes (the inverse of the
width shown in the third column, of about few MeV) are
several times larger than the time of fireball freezeout
�⌧ ⇠ 10fm/c ⇠ 1/(20 MeV ), so all this decays take
place outside of matter, in free space.

In the spirit of statistical models, one may assume that
all

Nstates =
X

i

(2Ji + 1) = 49

states in this energy strip are populated equally in the
quantum decomposition of pre-clusters which in our clas-
sical simulation have corresponding energies. With this
assumption, and using the decays indicated in the ta-

ble (interpreted as p + t, n + He3, d + d exclusive chan-
nels), one further finds that decays of a single ppnn
pre-cluster should produce, in average, 0.24(p+ tritium),
0.27 (n+He3) and 0.97 deuterons (0.49 dd pairs). Detec-
tor resolution permitting, one should search for evidences
of these p + t, d + d resonances in heavy ion datasets. If
such “feed down” be found, it would obviously be the
direct evidence for 4-nucleon pre-clustering we advocate
in this work.

C. Post-freezeout wave package decay

The pre-clusters are not stationary states with fixed en-
ergy, and therefore, after they are produced at freezeout
(last collision) time, they decay into stationary states. As
we will see, most of those are the positive energy scatter-
ing states, with the bound states being only some fraction
of the output. The pre-clusters also are not pure states,
they are described by the density matrix. Their projec-
tion to physical final states, bound or unbound, should
be done as described earlier in this section.

An yet, it is instructive to study time evolution of some
wave packages, possible in cases in which a full set of
states is available. An example of such time evolution
for the two-particle problem is shown in Fig.12. As one
can see, the initial cluster smoothly increase its spatial
size. By the time t = 8 fm/c ( blue dash dotted curve)
this size even exceeds that of the bound state (red dashed
line). Note that at this late time about half of the density
is resigning in the states other than the ground states.

Note also that visible spatial oscillations at later time
suggest existence of certain cuto↵ above some state num-
ber n > ncutoff . This is not an artifact – our calculation
includes 60 states – but a physical e↵ect. Only for those
few states (with energies listed above) their energies are
comparable to the potential, and some observable scat-
tering phase shifts are detected. So, the pre-clusters are
superpositions of the ground state and several states with
positive energy. Their number depends on the unphysical
wall, but their energy spread is not. The energy uncer-
tainty of the pre-cluster is defined by the temperature,
�E ⇠ T . And indeed, only the ground state and 4 more
(listed above) have E0n < T = 100MeV ⇡ 0.5 fm�1.

(At time t > 10 fm/c the unphysical wall we used
to generate discrete states generates unphysical reflected
waves, therefore those are not shown.)

Qualitative lesson from this exercise is as follows. After
collisional stage the systems are produced as pre-clusters,
with hadronic size ⇠ 1 fm. Then their e↵ective sizes
grow smoothly with time. The cross section of something
colliding with it � ⇠< r2(t) > increases by about an or-
der of magnitude during the time ⇠ 10 fm/c. But, due
to overall 3-d expansion of the system, the density drops,
and by a larger factor. We know it, because otherwise col-
lisions would be happening and the spectrum would con-
tinue to be modified: while the observed spectra do indi-
cate a rather sharp kinetic freezeout at Tf ⇠ 100 MeV .

here are experimentally observed 
excited states of He4 
the first one fits well  

to our second bound state

Now, getting convinced that we understand 
quantum mechanics of 4 nucleons in He4, 

we proceed to calculate  
the density matrix at finite T 
and check how it changes  

when the nuclear potential changes
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FIG. 9: Solid lines: Boltzmann-weighted density matrix, at
T = 100 MeV, using 40 lowest states of the K-harmonics
radial equation, for the unmodified nuclear potential V1 used
in Ref. [17] (upper plot) and a modified one (lower plot). In
both cases the blue dashed lines show the contribution of the
lowest bound state.

states) increases from ⇠ 0.4 to ⇠ 12, a huge factor. It is
however expected from our semiclassical calculation, see
e.g. Fig. 5 for similar e↵ect in the two-body case.

V. PRE-CLUSTERS AND PRODUCTION OF
LIGHT NUCLEI

The reader who went that far in the paper must be con-
vinced that pre-clustering of the nucleons does happen in
heavy ion collisions, at the kinetic freezeout time. Fur-
thermore, it is significantly enhanced if the internucleon
potential is modified due to meson mass modification or
appearance of the QCD critical point. Indeed, we stud-
ied this phenomenon in our previous paper [4] by classical
molecular dynamics simulations, and in the previous sec-
tions by semiclassical and PIMC quantum methods.

Before proceeding to the observables, let us start by
reminding once more what we call the “pre-clustering”
phenomenon. It is very important to keep in mind that
the pre-clusters we study are very di↵erent from “nuclear
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0+ state, with a binding energy of

B = �28.3 MeV + 20.2 MeV = �8.1 MeV , (25)

which is not the same as for our second 0+ state, but close
enough to identify them as the same radial excitation
state. The plot of both solutions is shown in Fig. 8.

FIG. 8: Two radial bound state 0+ wave functions for 4He,
which are solutions of Eq. (A3) as a function of the hyperdis-
tance variable. Their energies are discussed in the text.

At finite temperature, we also use the unbound states
to weight them with the corresponding Boltzmann fac-
tor and calculate the thermal density matrix. The results
are shown in Fig. 9 for T = 100 MeV. In the upper plot
we present the results using the potential V1 given in
Ref. [17]. The solid line is the weighted density matrix
at T = 100 MeV compared to the contribution of the
lowest bound state only (blue dashed line). For this (un-
modified) potential the contribution of excited state to
the density matrix is important as can be seen from the
di↵erence between the two curves.

In order to see what happens if the interaction poten-
tial is medium-modified, we repeat the calculation with
the same form of the potential, but with the coe�cient
of the attractive term double. In this case the minimum
of the potential reaches ⇠ �400 MeV, similarly to what
happens in Fig. 1.

This modified potential now has several radial bound
states: their energies are

E( MeV) = �226.1, �120.1, �52.6, �17.3, �3.4, �0.1 .

The density matrix element and the lowest bound state
wave function squared are shown in the lower panel of
Fig. 9. In contrast to the upper plot, (for unmodified
potential) the lowest state dominates the density matrix.
It is not surprising, since the binding is more than twice
the temperature.

In that figure we can read the magnitude of the cor-
relation, relative to the constant asymptotic distance
(the thermal contribution of propagating positive energy
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both cases the blue dashed lines show the contribution of the
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heavy ion collisions, at the kinetic freezeout time. Fur-
thermore, it is significantly enhanced if the internucleon
potential is modified due to meson mass modification or
appearance of the QCD critical point. Indeed, we stud-
ied this phenomenon in our previous paper [4] by classical
molecular dynamics simulations, and in the previous sec-
tions by semiclassical and PIMC quantum methods.
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phenomenon. It is very important to keep in mind that
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results, once effective repulsion is included

How the clustering changes as a function of the effective nuclear potential?

total and 
contribution of the ground state

So, clustering changes  
from effect of 0.5 to about 10, 

 factor 20

unmodified nuclear potential

modified nuclear potential



“pre-clusters” versus “fragments”
At T=O(10 MeV) a “multifragmentation”,  

production of various isotopes in wide range of A

We discuss freezeout  of higher energy collisions  
in which T=O(100 MeV)  

fragments heavier than He4 are not produced

Yet even under such conditions one may have “pre-clusters” 
Of several nucleons held together by inter nucleon potential 

They have size of the order of 1.5 fm, the nuclear force radius 

�E ⇠ T � |Ebinding|
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Therefore after freezeout they decay mostly into free nucleons, 
 But, with certain (projected) probability, also into d,t,He3,(pnLambda)

The large size of the bound states is important, 
 but so is their compact component 

(without which they would not be bound)



what effect of pre-clustering can we see experimentally? 
this is what is already observed 11
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Juan M. Torres-Rincon (SBU) Modification of the NN potential...due to the QCD critical point 20FIG. 10: The ratio (25) as a function of collision energy. The
ratio is normalized by the corresponding statistical weights:
note that the high energy RHIC point at the r.h.s. of the plot
give the ratio value consistent with 1. Deviation from 1 is
related to nonzero interaction as shown in (27).

follows. A maximum in t � p � d combination was orig-
inally reported, by NA49 [20], to be around

p
sNN ⇡ 9

GeV. Very recent preliminary data [21] from STAR BES
also see a maximum, although at

p
sNN = 20 � 30 GeV.

However, at collision energies
p

s ⇠ 10 � 40 GeV the
value of the ratio observed is larger than one, roughly by
the factor 2. If correct, this enhancement implies that
under such conditions the potential and the temperature
are comparable V/T ⇠ O(1) as indicated in the rela-
tion (27). We suggest that this extra tritium production
comes from the pre-clustering phenomenon we discuss.

With the current data accuracy it is not possible to
tell whether Fig. 10 show a one-maximum or a double-
hump distribution. Let us note, that apart of hypotheti-
cal QCD critical point, the non-monotonous behavior can
be caused by the onset of other (perhaps less exciting but
still very important) phenomena are also expected in the
same energy range.

One of them is the maximum fireball lifetime as a func-
tion of

p
sNN , well documented by recent femtoscopy

data [3], located at
p

sNN ⇡ 47 GeV. As indicated
already on the early study [2] of hydrodynamical ex-
pansion, there are two reasons for its existence, playing
together in this energy range. Those are
(i) the “softest point” in the equation of state, a
minimum in the speed of sound c2

s = dp/d✏ or maximal
compressibility of matter.
(ii) the maximal re-scattering rate at freezeout. When
the densities of pions and nucleons are compara-
ble N⇡ ⇠ NN , the largest relevant cross section
(reaching�⇡N ⇠???mb at the � peak) is most e↵ective.

Focusing only on STAR data, and assuming that the
deviation from 1 and the corresponding peak of the t, p, d
ratio is due to the modification of the NN potential. It
is very tantalising to consider ratios in which heavier nu-

clei (with larger numbers of nucleon pairings) would pro-
duce higher e↵ect. Considering Helium-4 we introduced
three more ratios which would enhance the power in the
exponential by a factor 2 or 3. Assuming the e↵ect is
entirely ascribed to the modification and simplifying the
average over potential as indicated, it is very easy to gen-
erate a rough prediction for each of these ratios. We plot
the results in Fig. ?? for each of the ratios (notice that
the result for O↵tp3Hed has been divided a factor of 5).
While the absolute value of these ratios depend on spin
degeneracies and other factor, the important feature is
the relative di↵erence between the peak and the values
at low and high energies.

FIG. 11: The ratios (27,??,??,??) as a function of collision
energy.

If the experimental reconstruction of ↵ particles can be
performed in these low-energy collisions, and their mul-
tiplicity measured with certain level of confidence, these
ratios would prove the sensitivity of the NN potential to
the presence of a near-by critical point.

VI. FROM PRE-CLUSTERS TO PHYSICAL
NUCLEAR FRAGMENTS

The understanding of formation of various nuclear
species is among the central topics of nuclear physics. It
has been studied a lot, in cosmological and astrophysical
settings. What is common to the regimes in which nuclei
are produced in cosmos is that the available tempera-
tures are much lower than binding energies, B � T . The
binding dominates the Boltzmann factors, thus peaks at
double magic nuclei such as He4.
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fragments” and light nuclei.
The light nuclei we will be discussing, with N = 2, 3, 4

nucleons, d, t,3
⇤
H,3He,4He, typically have only one bound

state. Furthermore, they all have very small binding en-
ergies, even in nuclear standards. The deuteron binding
is only Bd = 2.2 MeV. An extreme case is the hyper-
tritium H3

⇤
= pn⇤: its lambda separation energy is

only [? ] [? ]

B⇤(H3

⇤
) = 0.13 ± 0.05 MeV . (26)

Clearly the physical sizes of these states are very large,
comparable or larger than fireballs they come from.

These objects are therefore very fragile, easily de-
stroyed in any collision due to large cross section, and
the cascade codes typically predicted strong suppression
of their production. And yet, as shown in [15], their pro-
duction rate is in good agreement with the prediction of
statistical thermal model based on “resonance gas” ther-
modynamics. This model knows only vacuum masses of
these particles, entirely ignoring their small binding. To
reconcile the data with codes, in literature [? ] some so-
far unobserved “resonances” were predicted, which have
small sizes and “reasonable” destruction cross section,
decaying into light nuclei after freezeout. The explana-
tion we suggest is that one does not need such hypo-
thetical resonances: their role is played by pre-clusters
we study. They are not bound states or resonances, just
statistical correlations, and energy uncertainty �E ⇠ T .

Basically, there are two experimental signatures of pre-
clusters. One, discussed in detail in [4] is a modified
proton multiplicity distribution. Another one, which we
will address below, is certain modification of light-nuclei
production.

As we already mentioned, overall production of light
nuclei (and antinuclei) is well reproduced by the statis-
tical thermal model, see e.g. [15]. By “overall” we mean
that each extra nucleon is suppressed by the same fac-
tor exp[�(MN ± µb)/Tch]. The fitted values of chemical
freezeout temperature and baryon chemical potential are
key parameters, which give us ideas about matter as en-
ters the hadronic world, and their dependence on the
collision energy is well documented in [15].

However, on top of this overall successful description
there is some “finer structure”. It becomes visible in
ratios, in which the main suppression factors just men-
tioned cancel out. One observable ratio is the tritium-
proton-deuterium combination defined as

Otpd =
NtNp

N2

d

, (27)

has been previously discussed in [19]. We will also con-
sider the following ratios involving 4He (= ↵)

O↵p3Hed =
N↵Np

N3HeNd
, O↵tp3Hed =

N↵NtN2

p

N3HeN3

d

. (28)

All these ratios have the same power of fugacity in de-
nominator and numerator, which do thus cancel, elimi-

nating the trivial dependence on baryonic chemical po-
tential. Furthermore, in classical statistical mechanics
the momentum and coordinate partition functions fac-
torize, simplifying the discussion. Mean kinetic energy
per nucleon, either a single one or inside any pre-cluster,
is the same, hKi = 3T/2. So, in all ratios the kinetic
parts of the Boltzmann factor, exp(�K/T ) for each nu-
cleon, do cancel as well. What is left are factors from
statistical weights, powers of masses in the preexponent,
and potential energies

Otpd =
4

9
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he�3V/T
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he�V/T i2d

⇡ 0.29he�V/T
i (29)

the factor 3 in the exponent reminds that in tritium there
are three nucleon pairs, and the r.h.s. is simplified under
approximation that the averaged relative potential is the
same. Analogously

O↵p3Hed =
1
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◆3/2
he�6V/T
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he�3V/T i3Hehe�V/T id
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i (30)

where 6 is the number of nucleon pairs in 4He.

O↵tp3Hed =
8

54
23/2

he�6V/T
i↵he�3V/T

it

he�3V/T i3Hehe�V/T id

⇡ 0.42he�3V/T
i (31)

Related to this last example, if one has an approximate
isospin symmetry, one can also consider the simpler ratio

O↵pd =
N↵N2

p

N3

d

=
4

27
2�3/2eµQ/T he�6V/T

i↵

he�V/T i2d

⇡ 0.05eµQ/T
he�3V/T

i , (32)

where µQ is the charge chemical potential signalling a
possible breaking of the isospin symmetry. Notice that
STAR collaboration has performed statistical thermal fits
in the BES neglecting this chemical potential[], whereas
NA49 collaboration has extracted this coe�cient in its
collision getting values µQ/T ⇠ �0.05 MeV [], so we will
neglect it in what follows.

After introducing all these ratios let us look at exper-
imental results.

In Fig. 10 we show available experimental data on the
energy dependence of the combination (27), including rel-
evant statistical weights. Ignoring t and d binding in a
statistical model, one would expect this combination to
be equal to unit value. It is indeed the case at

p
s = 200

GeV (the point at the right), with good accuracy. It
is also the case at LHC energies, as shown by ALICE
collaboration (not shown).

Focusing on specific ratios of t, p, d production, in
which many kinematical factors drop out, one should
expect their non-monotonous energy dependence. The
status of experimental measurements of these ratios is as

note that exp[(\mu-mN)/T] 
cancels out, as well as thermal  

kinetic energy 
only interaction remains 
3 pairs in t, against 1 in d

Note that the point at 200 GeV (at the r.h.s.) gives 1, 
same as at LHC (ALICE) 

it is not a random number but  
the prediction of the statistical model !

Note further,  the effect of binding is negligible B<<T: 
but modified potential gives binding comparable to T



some predictions for ratios, from he4-like pre-clusters
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note that the high energy RHIC point at the r.h.s. of the plot
give the ratio value consistent with 1. Deviation from 1 is
related to nonzero interaction as shown in (27).

follows. A maximum in t � p � d combination was orig-
inally reported, by NA49 [20], to be around

p
sNN ⇡ 9

GeV. Very recent preliminary data [21] from STAR BES
also see a maximum, although at

p
sNN = 20 � 30 GeV.

However, at collision energies
p

s ⇠ 10 � 40 GeV the
value of the ratio observed is larger than one, roughly by
the factor 2. If correct, this enhancement implies that
under such conditions the potential and the temperature
are comparable V/T ⇠ O(1) as indicated in the rela-
tion (27). We suggest that this extra tritium production
comes from the pre-clustering phenomenon we discuss.

With the current data accuracy it is not possible to
tell whether Fig. 10 show a one-maximum or a double-
hump distribution. Let us note, that apart of hypotheti-
cal QCD critical point, the non-monotonous behavior can
be caused by the onset of other (perhaps less exciting but
still very important) phenomena are also expected in the
same energy range.

One of them is the maximum fireball lifetime as a func-
tion of

p
sNN , well documented by recent femtoscopy

data [3], located at
p

sNN ⇡ 47 GeV. As indicated
already on the early study [2] of hydrodynamical ex-
pansion, there are two reasons for its existence, playing
together in this energy range. Those are
(i) the “softest point” in the equation of state, a
minimum in the speed of sound c2

s = dp/d✏ or maximal
compressibility of matter.
(ii) the maximal re-scattering rate at freezeout. When
the densities of pions and nucleons are compara-
ble N⇡ ⇠ NN , the largest relevant cross section
(reaching�⇡N ⇠???mb at the � peak) is most e↵ective.

Focusing only on STAR data, and assuming that the
deviation from 1 and the corresponding peak of the t, p, d
ratio is due to the modification of the NN potential. It
is very tantalising to consider ratios in which heavier nu-

clei (with larger numbers of nucleon pairings) would pro-
duce higher e↵ect. Considering Helium-4 we introduced
three more ratios which would enhance the power in the
exponential by a factor 2 or 3. Assuming the e↵ect is
entirely ascribed to the modification and simplifying the
average over potential as indicated, it is very easy to gen-
erate a rough prediction for each of these ratios. We plot
the results in Fig. ?? for each of the ratios (notice that
the result for O↵tp3Hed has been divided a factor of 5).
While the absolute value of these ratios depend on spin
degeneracies and other factor, the important feature is
the relative di↵erence between the peak and the values
at low and high energies.
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FIG. 11: The ratios (27,??,??,??) as a function of collision
energy.

If the experimental reconstruction of ↵ particles can be
performed in these low-energy collisions, and their mul-
tiplicity measured with certain level of confidence, these
ratios would prove the sensitivity of the NN potential to
the presence of a near-by critical point.

VI. FROM PRE-CLUSTERS TO PHYSICAL
NUCLEAR FRAGMENTS

The understanding of formation of various nuclear
species is among the central topics of nuclear physics. It
has been studied a lot, in cosmological and astrophysical
settings. What is common to the regimes in which nuclei
are produced in cosmos is that the available tempera-
tures are much lower than binding energies, B � T . The
binding dominates the Boltzmann factors, thus peaks at
double magic nuclei such as He4.
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fragments” and light nuclei.
The light nuclei we will be discussing, with N = 2, 3, 4

nucleons, d, t,3
⇤
H,3He,4He, typically have only one bound

state. Furthermore, they all have very small binding en-
ergies, even in nuclear standards. The deuteron binding
is only Bd = 2.2 MeV. An extreme case is the hyper-
tritium H3

⇤
= pn⇤: its lambda separation energy is

only [? ] [? ]

B⇤(H3

⇤
) = 0.13 ± 0.05 MeV . (26)

Clearly the physical sizes of these states are very large,
comparable or larger than fireballs they come from.

These objects are therefore very fragile, easily de-
stroyed in any collision due to large cross section, and
the cascade codes typically predicted strong suppression
of their production. And yet, as shown in [15], their pro-
duction rate is in good agreement with the prediction of
statistical thermal model based on “resonance gas” ther-
modynamics. This model knows only vacuum masses of
these particles, entirely ignoring their small binding. To
reconcile the data with codes, in literature [? ] some so-
far unobserved “resonances” were predicted, which have
small sizes and “reasonable” destruction cross section,
decaying into light nuclei after freezeout. The explana-
tion we suggest is that one does not need such hypo-
thetical resonances: their role is played by pre-clusters
we study. They are not bound states or resonances, just
statistical correlations, and energy uncertainty �E ⇠ T .

Basically, there are two experimental signatures of pre-
clusters. One, discussed in detail in [4] is a modified
proton multiplicity distribution. Another one, which we
will address below, is certain modification of light-nuclei
production.

As we already mentioned, overall production of light
nuclei (and antinuclei) is well reproduced by the statis-
tical thermal model, see e.g. [15]. By “overall” we mean
that each extra nucleon is suppressed by the same fac-
tor exp[�(MN ± µb)/Tch]. The fitted values of chemical
freezeout temperature and baryon chemical potential are
key parameters, which give us ideas about matter as en-
ters the hadronic world, and their dependence on the
collision energy is well documented in [15].

However, on top of this overall successful description
there is some “finer structure”. It becomes visible in
ratios, in which the main suppression factors just men-
tioned cancel out. One observable ratio is the tritium-
proton-deuterium combination defined as

Otpd =
NtNp

N2

d

, (27)

has been previously discussed in [19]. We will also con-
sider the following ratios involving 4He (= ↵)

O↵p3Hed =
N↵Np

N3HeNd
, O↵tp3Hed =

N↵NtN2

p

N3HeN3

d

. (28)

All these ratios have the same power of fugacity in de-
nominator and numerator, which do thus cancel, elimi-

nating the trivial dependence on baryonic chemical po-
tential. Furthermore, in classical statistical mechanics
the momentum and coordinate partition functions fac-
torize, simplifying the discussion. Mean kinetic energy
per nucleon, either a single one or inside any pre-cluster,
is the same, hKi = 3T/2. So, in all ratios the kinetic
parts of the Boltzmann factor, exp(�K/T ) for each nu-
cleon, do cancel as well. What is left are factors from
statistical weights, powers of masses in the preexponent,
and potential energies

Otpd =
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the factor 3 in the exponent reminds that in tritium there
are three nucleon pairs, and the r.h.s. is simplified under
approximation that the averaged relative potential is the
same. Analogously
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where 6 is the number of nucleon pairs in 4He.
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Related to this last example, if one has an approximate
isospin symmetry, one can also consider the simpler ratio

O↵pd =
N↵N2

p

N3

d

=
4

27
2�3/2eµQ/T he�6V/T

i↵

he�V/T i2d

⇡ 0.05eµQ/T
he�3V/T
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where µQ is the charge chemical potential signalling a
possible breaking of the isospin symmetry. Notice that
STAR collaboration has performed statistical thermal fits
in the BES neglecting this chemical potential[], whereas
NA49 collaboration has extracted this coe�cient in its
collision getting values µQ/T ⇠ �0.05 MeV [], so we will
neglect it in what follows.

After introducing all these ratios let us look at exper-
imental results.

In Fig. 10 we show available experimental data on the
energy dependence of the combination (27), including rel-
evant statistical weights. Ignoring t and d binding in a
statistical model, one would expect this combination to
be equal to unit value. It is indeed the case at

p
s = 200

GeV (the point at the right), with good accuracy. It
is also the case at LHC energies, as shown by ALICE
collaboration (not shown).

Focusing on specific ratios of t, p, d production, in
which many kinematical factors drop out, one should
expect their non-monotonous energy dependence. The
status of experimental measurements of these ratios is as
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= pn⇤: its lambda separation energy is
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) = 0.13 ± 0.05 MeV . (26)

Clearly the physical sizes of these states are very large,
comparable or larger than fireballs they come from.

These objects are therefore very fragile, easily de-
stroyed in any collision due to large cross section, and
the cascade codes typically predicted strong suppression
of their production. And yet, as shown in [15], their pro-
duction rate is in good agreement with the prediction of
statistical thermal model based on “resonance gas” ther-
modynamics. This model knows only vacuum masses of
these particles, entirely ignoring their small binding. To
reconcile the data with codes, in literature [? ] some so-
far unobserved “resonances” were predicted, which have
small sizes and “reasonable” destruction cross section,
decaying into light nuclei after freezeout. The explana-
tion we suggest is that one does not need such hypo-
thetical resonances: their role is played by pre-clusters
we study. They are not bound states or resonances, just
statistical correlations, and energy uncertainty �E ⇠ T .

Basically, there are two experimental signatures of pre-
clusters. One, discussed in detail in [4] is a modified
proton multiplicity distribution. Another one, which we
will address below, is certain modification of light-nuclei
production.

As we already mentioned, overall production of light
nuclei (and antinuclei) is well reproduced by the statis-
tical thermal model, see e.g. [15]. By “overall” we mean
that each extra nucleon is suppressed by the same fac-
tor exp[�(MN ± µb)/Tch]. The fitted values of chemical
freezeout temperature and baryon chemical potential are
key parameters, which give us ideas about matter as en-
ters the hadronic world, and their dependence on the
collision energy is well documented in [15].

However, on top of this overall successful description
there is some “finer structure”. It becomes visible in
ratios, in which the main suppression factors just men-
tioned cancel out. One observable ratio is the tritium-
proton-deuterium combination defined as

Otpd =
NtNp

N2

d

, (27)

has been previously discussed in [19]. We will also con-
sider the following ratios involving 4He (= ↵)

O↵p3Hed =
N↵Np

N3HeNd
, O↵tp3Hed =

N↵NtN2

p

N3HeN3

d

. (28)

All these ratios have the same power of fugacity in de-
nominator and numerator, which do thus cancel, elimi-

nating the trivial dependence on baryonic chemical po-
tential. Furthermore, in classical statistical mechanics
the momentum and coordinate partition functions fac-
torize, simplifying the discussion. Mean kinetic energy
per nucleon, either a single one or inside any pre-cluster,
is the same, hKi = 3T/2. So, in all ratios the kinetic
parts of the Boltzmann factor, exp(�K/T ) for each nu-
cleon, do cancel as well. What is left are factors from
statistical weights, powers of masses in the preexponent,
and potential energies
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the factor 3 in the exponent reminds that in tritium there
are three nucleon pairs, and the r.h.s. is simplified under
approximation that the averaged relative potential is the
same. Analogously
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Related to this last example, if one has an approximate
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where µQ is the charge chemical potential signalling a
possible breaking of the isospin symmetry. Notice that
STAR collaboration has performed statistical thermal fits
in the BES neglecting this chemical potential[], whereas
NA49 collaboration has extracted this coe�cient in its
collision getting values µQ/T ⇠ �0.05 MeV [], so we will
neglect it in what follows.

After introducing all these ratios let us look at exper-
imental results.

In Fig. 10 we show available experimental data on the
energy dependence of the combination (27), including rel-
evant statistical weights. Ignoring t and d binding in a
statistical model, one would expect this combination to
be equal to unit value. It is indeed the case at

p
s = 200

GeV (the point at the right), with good accuracy. It
is also the case at LHC energies, as shown by ALICE
collaboration (not shown).

Focusing on specific ratios of t, p, d production, in
which many kinematical factors drop out, one should
expect their non-monotonous energy dependence. The
status of experimental measurements of these ratios is as
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duction rate is in good agreement with the prediction of
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Basically, there are two experimental signatures of pre-
clusters. One, discussed in detail in [4] is a modified
proton multiplicity distribution. Another one, which we
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the momentum and coordinate partition functions fac-
torize, simplifying the discussion. Mean kinetic energy
per nucleon, either a single one or inside any pre-cluster,
is the same, hKi = 3T/2. So, in all ratios the kinetic
parts of the Boltzmann factor, exp(�K/T ) for each nu-
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where µQ is the charge chemical potential signalling a
possible breaking of the isospin symmetry. Notice that
STAR collaboration has performed statistical thermal fits
in the BES neglecting this chemical potential[], whereas
NA49 collaboration has extracted this coe�cient in its
collision getting values µQ/T ⇠ �0.05 MeV [], so we will
neglect it in what follows.

After introducing all these ratios let us look at exper-
imental results.

In Fig. 10 we show available experimental data on the
energy dependence of the combination (27), including rel-
evant statistical weights. Ignoring t and d binding in a
statistical model, one would expect this combination to
be equal to unit value. It is indeed the case at

p
s = 200

GeV (the point at the right), with good accuracy. It
is also the case at LHC energies, as shown by ALICE
collaboration (not shown).

Focusing on specific ratios of t, p, d production, in
which many kinematical factors drop out, one should
expect their non-monotonous energy dependence. The
status of experimental measurements of these ratios is as
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tical thermal model, see e.g. [15]. By “overall” we mean
that each extra nucleon is suppressed by the same fac-
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key parameters, which give us ideas about matter as en-
ters the hadronic world, and their dependence on the
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All these ratios have the same power of fugacity in de-
nominator and numerator, which do thus cancel, elimi-

nating the trivial dependence on baryonic chemical po-
tential. Furthermore, in classical statistical mechanics
the momentum and coordinate partition functions fac-
torize, simplifying the discussion. Mean kinetic energy
per nucleon, either a single one or inside any pre-cluster,
is the same, hKi = 3T/2. So, in all ratios the kinetic
parts of the Boltzmann factor, exp(�K/T ) for each nu-
cleon, do cancel as well. What is left are factors from
statistical weights, powers of masses in the preexponent,
and potential energies
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where µQ is the charge chemical potential signalling a
possible breaking of the isospin symmetry. Notice that
STAR collaboration has performed statistical thermal fits
in the BES neglecting this chemical potential[], whereas
NA49 collaboration has extracted this coe�cient in its
collision getting values µQ/T ⇠ �0.05 MeV [], so we will
neglect it in what follows.

After introducing all these ratios let us look at exper-
imental results.

In Fig. 10 we show available experimental data on the
energy dependence of the combination (27), including rel-
evant statistical weights. Ignoring t and d binding in a
statistical model, one would expect this combination to
be equal to unit value. It is indeed the case at

p
s = 200

GeV (the point at the right), with good accuracy. It
is also the case at LHC energies, as shown by ALICE
collaboration (not shown).

Focusing on specific ratios of t, p, d production, in
which many kinematical factors drop out, one should
expect their non-monotonous energy dependence. The
status of experimental measurements of these ratios is as
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torize, simplifying the discussion. Mean kinetic energy
per nucleon, either a single one or inside any pre-cluster,
is the same, hKi = 3T/2. So, in all ratios the kinetic
parts of the Boltzmann factor, exp(�K/T ) for each nu-
cleon, do cancel as well. What is left are factors from
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where µQ is the charge chemical potential signalling a
possible breaking of the isospin symmetry. Notice that
STAR collaboration has performed statistical thermal fits
in the BES neglecting this chemical potential[], whereas
NA49 collaboration has extracted this coe�cient in its
collision getting values µQ/T ⇠ �0.05 MeV [], so we will
neglect it in what follows.

After introducing all these ratios let us look at exper-
imental results.

In Fig. 10 we show available experimental data on the
energy dependence of the combination (27), including rel-
evant statistical weights. Ignoring t and d binding in a
statistical model, one would expect this combination to
be equal to unit value. It is indeed the case at

p
s = 200

GeV (the point at the right), with good accuracy. It
is also the case at LHC energies, as shown by ALICE
collaboration (not shown).

Focusing on specific ratios of t, p, d production, in
which many kinematical factors drop out, one should
expect their non-monotonous energy dependence. The
status of experimental measurements of these ratios is as
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TABLE I: Low-lying resonances of 4He system, from BNL
properties of nuclides listed in nndc.bnl.gov web page. JP

is total angular momentum and parity, � is the width. The
last column is the decay channel branching ratios, in percents.
p, n, d correspond to emission of proton, neutron or deuterons.

E (MeV) JP � (MeV) decay modes, in %

20.21 0+ 0.50 p =100

21.01 0� 0.84 n =24, p =76

21.84 2� 2.01 n = 37, p = 63

23.33 2� 5.01 n = 47, p = 53

23.64 1� 6.20 n = 45, p = 55

24.25 1� 6.10 n = 47, p = 50 , d=3

25.28 0� 7.97 n = 48 , p = 52

25.95 1� 12.66 n = 48 ,p = 52

27.42 2+ 8.69 n = 3 , p = 3 ,d = 94

28.31 1+ 9.89 n = 47 , p = 48 , d = 5

28.37 1� 3.92 n = 2, p = 2, d = 96

28.39 2� 8.75 n = 0.2, p = 0.2 , d = 99.6

28.64 0� 4.89 d=100

28.67 2+ 3.78 d=100

29.89 2+ 9.72 n = 0.4 , p = 0.4, d = 99.2

One feature expected would be a peak at small relative
rapidity. In the invariant mass distribution (p1 + p2)2

one also should find low mass enhancement, related to
4-nucleon resonances. While we have not derived those
theoretically, from quantum mechanics, we in fact have
quite a number of them found experimentally. In Table 1
we list 15 such resonances occupying the strip of energies
of the width �E = 10MeV above binding, shown with
their quantum numbers and branching ratios for their
decay modes.

Note that already in this strip the resonances are
strongly overlapping, as the widths and energy di↵er-
ences are comparable. Growing density of states and
widths above this strip makes their separation/discovery
hard. But we are not discussing finding them one-by-one,
but rather a collective near-zero e↵ective mass enhance-
ment.

It is important that their lifetimes (the inverse of the
width shown in the third column, of about few MeV) are
several times larger than the time of fireball freezeout
�⌧ ⇠ 10fm/c ⇠ 1/(20 MeV ), so all this decays take
place outside of matter, in free space.

In the spirit of statistical models, one may assume that
all

Nstates =
X

i

(2Ji + 1) = 49

states in this energy strip are populated equally in the
quantum decomposition of pre-clusters which in our clas-
sical simulation have corresponding energies. With this
assumption, and using the decays indicated in the ta-

ble (interpreted as p + t, n + He3, d + d exclusive chan-
nels), one further finds that decays of a single ppnn
pre-cluster should produce, in average, 0.24(p+ tritium),
0.27 (n+He3) and 0.97 deuterons (0.49 dd pairs). Detec-
tor resolution permitting, one should search for evidences
of these p + t, d + d resonances in heavy ion datasets. If
such “feed down” be found, it would obviously be the
direct evidence for 4-nucleon pre-clustering we advocate
in this work.

C. Post-freezeout wave package decay

The pre-clusters are not stationary states with fixed en-
ergy, and therefore, after they are produced at freezeout
(last collision) time, they decay into stationary states. As
we will see, most of those are the positive energy scatter-
ing states, with the bound states being only some fraction
of the output. The pre-clusters also are not pure states,
they are described by the density matrix. Their projec-
tion to physical final states, bound or unbound, should
be done as described earlier in this section.

An yet, it is instructive to study time evolution of some
wave packages, possible in cases in which a full set of
states is available. An example of such time evolution
for the two-particle problem is shown in Fig.12. As one
can see, the initial cluster smoothly increase its spatial
size. By the time t = 8 fm/c ( blue dash dotted curve)
this size even exceeds that of the bound state (red dashed
line). Note that at this late time about half of the density
is resigning in the states other than the ground states.

Note also that visible spatial oscillations at later time
suggest existence of certain cuto↵ above some state num-
ber n > ncutoff . This is not an artifact – our calculation
includes 60 states – but a physical e↵ect. Only for those
few states (with energies listed above) their energies are
comparable to the potential, and some observable scat-
tering phase shifts are detected. So, the pre-clusters are
superpositions of the ground state and several states with
positive energy. Their number depends on the unphysical
wall, but their energy spread is not. The energy uncer-
tainty of the pre-cluster is defined by the temperature,
�E ⇠ T . And indeed, only the ground state and 4 more
(listed above) have E0n < T = 100MeV ⇡ 0.5 fm�1.

(At time t > 10 fm/c the unphysical wall we used
to generate discrete states generates unphysical reflected
waves, therefore those are not shown.)

Qualitative lesson from this exercise is as follows. After
collisional stage the systems are produced as pre-clusters,
with hadronic size ⇠ 1 fm. Then their e↵ective sizes
grow smoothly with time. The cross section of something
colliding with it � ⇠< r2(t) > increases by about an or-
der of magnitude during the time ⇠ 10 fm/c. But, due
to overall 3-d expansion of the system, the density drops,
and by a larger factor. We know it, because otherwise col-
lisions would be happening and the spectrum would con-
tinue to be modified: while the observed spectra do indi-
cate a rather sharp kinetic freezeout at Tf ⇠ 100 MeV .
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The setting we discuss – the freezeout of high energy
heavy ion collisions – is in the opposite regime, the bind-
ings are all negligible B ⌧ T . Deviations of the ra-
tios from statistical predictions imply that interaction
strength V and T are comparable, in specific collision
energy range. It is only possible when distances between
nucleons are 1-2 fm/c, which we call pre-clusters. Our dy-
namical studies have shown that the corresponding cor-
relations can be large, especially if the nuclear forces are
modified as expected.

A. Pre-cluster projections to the ground states

When discussing pre-clusters so far we focused on the
thermal density matrix in coordinate space P (x, T ), ig-
noring momentum distributions. The reason for that
was that for nonrelativistic particles the kinetic energy is
quadratic in momenta and those distributions are simple
Gaussian Maxwell’s distribution (with the correspond-
ing e↵ective mass for relative motion). Projection to the
ground state is however defined by simultaneous projec-
tion to the Wigner function of the state in the phase
space

Z
e
� q2

2MeffT P (x, T )W 2

0
(x, p)

d3xd3q

(2⇡)3
(33)

where x is relative coordinate and q is relative momen-
tum.

As witnessed by mesonic and baryonic p? spectra,
those are well explained by a combination of hydro
flow and thermal distributions, with the lowest Tf ⇠

100 MeV . This means that after the thermal stage with
such Tf there are e↵ectively no collisions. Frozen momen-
tum distributions tell us that the spatial particle distri-
butions must also be frozen. If those multi-nucleon dis-
tributions include pre-clusters, one has to address their
decay to the ground states.

This problem is not of course new, and is in practice
people using cascade or molecular dynamics codes for
the description of heavy ion collisions use the so called
Wigner projection, from presumed distribution in ther-
mal ensemble in positions and momenta, to the Wigner
functions of the nuclear fragments. This projection is
customary done by the nucleon coalescence calculations.
Specifically, it is usually done is via simple Gaussian form
of the Wigner function Ref.[6]

W (r, p) = 8 exp

✓
�

r2

d2
� p2d2

◆
, (34)

possessing only one parameter, the r.m.s. radius. For
example, for the deuteron people use d = 1.7 fm, corre-
sponding to the r.m.s. deuteron radius of 2.1 fm. Fur-
thermore, it was claimed that even dependence on the
specific value of d is rather weak, and that all what mat-
ters is that the phase space volume has the right mag-
nitude, corresponding to a single state. This approach

is clearly oversimplified. Even the original approach to
deuteron, by Bethe, via a rectangular attractive poten-
tial well, clearly separated two components of the wave
function, the inside-potential and out-of-potential ones.
The former possesses large momenta related to the po-
tential well depth V , the latter has large size related to
binding. Since B ⌧ V they have di↵erent properties and
do not correspond to the single Gaussian. Even larger
di↵erence should be present for multi-nucleon case.

W for deuteron

FIG. 12: Black solid line is the ground state wave function
for the deuteron, squared. Blue dashed line is Gaussian form
(30).

For the two-nucleon system one can generate full set
of quantum states, evaluate the density matrix without
approximations, as well as follow the time evolution of
any cluster, as we have already done in section VI C.

B. Possible observation of pre-clusters
and statistical treatment of nuclear resonances

The pre-clusters do not have fixed energy, as they are
superposition of physical state in certain energy strip
�E ⇠ T . Being left alone, the pre-clusters decay into
many physical states of the corresponding number of nu-
cleons or light fragments. In the previous section we fo-
cused on the pre-cluster decay into the ground state. Now
we discuss its other decays (which of course dominate in
terms of the total probability).

Let us consider as an example a ppnn pre-cluster.
Apart of forming a single bound state, the alpha particle
or 4He, it can decay into (i) 4 individual nucleons; (ii)
1+3 channels p + t, n + He3; (iii) 2+2 channel d+d. The
question then is whether one can experimentally observe
pre-clusters looking at these two-body channels.

let us apply statistical model  
of the pre-cluster decays 
 using these resonances

one further finds that decays of a single ppnn pre-cluster should produce,  
in average, 0.24(p+ tritium), 0.27(n+He3) and 0.97 deuterons (0.49 dd pairs). 

 Detector resolution permitting, one should search for evidences of 
 these p + t, d + d resonances in heavy ion datasets. If such “feed down” be found,  

it would obviously be the direct evidence for 4-nucleon pre-clustering we advocate in this work.  

note long lifetimes, well beyond  
the lifetime of the fireball



summary
1. We studied pre-clustering of baryons at freeze out conditions, 

T ⇠ 100MeV, µb = 0...500MeV

including quantum and thermal fluctuations

2. K-harmonics and semiclassical methods work consistently,  
they describe e.g. He4 at T=0 and nonzero T

3. pre-clustering is very sensitive to the underlying nuclear potential, 
changes in sigma spectral density due to chiral transition 

or QCD critical point (if we are lucky)

4. If such modification does happen, as we expect, 
it  will strongly enhance ratios related with production of light nuclei 
(via feed-down from reclusters e.g. of 4 nucleons)



Comment on phenomena in the BES energy range

Most emphasized are enhanced fluctuations  
Kurtosis of baryon distribution 

Perhaps a signal of QCD critical point 
Seen at lowest energies

Another well documented is  the lowest lived fireball  
Related to ``the softest point” of the EOS

The ratio  below, sensitive to clustering,  
peaks at 

R =
n(t)n(p)

n(d)2
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