Lambda Polarization in Heavy-Ion Collisions

RHIC & AGS Users’ Meeting
Beam Energy Scan Workshop
June 4, 2019
Joseph Adams
A measurement of polarization by STAR

- 2017 STAR publication confirming $\bar{P}_{\Lambda/\bar{\Lambda}} > 0$ made cover of Nature magazine
 - What motivated this measurement?
 - What are the implications?

Background

- Lambda polarization has been measured in p+p and p+A collisions for decades now\(^1,2\).

- In 2004/5, Lambda polarization in non-central A+A collisions is suggested\(^3,4\).

Background

- Lambda polarization has been measured in p+p and p+A collisions for decades now\(^1,2\).
- In 2004/5, Lambda polarization in non-central A+A collisions is suggested\(^3,4\).

2. G. Bunce et al, *\(\Lambda^0 \) Hyperon Polarization in Inclusive Production by 300-GeV Protons on Beryllium*. PRL 36, 1113 (1976)
Lambda polarization has been measured in p+p and p+A collisions for decades now1,2.

In 2004/5, Lambda polarization in non-central A+A collisions is suggested3,4.

2. G. Bunce et al, Λ^0 Hyperon Polarization in Inclusive Production by 300-GeV Protons on Beryllium. PRL **36**, 1113 (1976)
Spin polarization of hadrons

Hydrodynamics/Partonic interactions

System angular momentum

\[\langle \vec{\omega}_{QGP} \rangle \parallel \vec{L}_{QGP} \]

Local angular momentum conservation

\[\langle \vec{S}_{\omega, \text{hadrons}} \rangle \parallel \vec{L}_{QGP} \]
Spin polarization of Lambdas

- Lambdas preferentially emit positively charged daughters along the direction of their spin

\[\frac{dN}{d\theta^*} = 1 + \alpha_\Lambda P_\Lambda \cos \theta^* \]

("*" indicates the Lambda rest frame)

\(\alpha_\Lambda \approx 0.642 \pm 0.013 \)
Corrects for known effects that dampen the signal

\[
\bar{P}_{\Lambda/\bar{\Lambda}} = \frac{1}{\Pi \pi \alpha} \frac{8}{R^{(1)}_{EP}} \left(\sin \left(\Psi_1 - \varphi^*/\pi^+ \right) \right)
\]

Correlates angular momentum of the system (\(\hat{J}_{sys}\)) with the orientation of the Lambda’s spin
Measuring \hat{L}_{QGP}

$$\bar{P}_\Lambda/\bar{\Lambda} = \frac{1}{\Pi} \frac{8}{\pi \alpha} \frac{1}{R_{\text{EP}}^{(1)}} \left(\sin \left(\Psi_1 - \phi_{p^+}^*/\pi^+ \right) \right)$$

Correlates angular momentum of the system (\hat{j}_{sys}) with the orientation of the Lambda’s spin.

Not all reconstructed Lambdas are actually Lambdas.

The measured Ψ_1 differs from Ψ_{RP}.

Lambdas do not emit their positive daughters exactly along the direction of their spins.
Measuring \hat{L}_{QGP}

- Lambdas’ daughter momenta need to be correlated with \hat{L}_{QGP}
- Approximate \hat{L}_{QGP} using the first-order event plane angle Ψ_1
- R_{EP}^1 quantifies how good this approximation is
Measuring \hat{L}_{QGP}

- Lambdas’ daughter momenta need to be correlated with \hat{L}_{QGP}
- Approximate \hat{L}_{QGP} using the first-order event plane angle Ψ_1
- R^{1}_{EP} quantifies how good this approximation is
Finding Lambdas

- Lambdas by reconstructed with protons and pions found with TPC and TOF.

- Requirements for a pair being identified as Lambda depend on the type of information available for the daughters.
Finding Lambdas

- Lambdas by reconstructing with protons and pions found with TPC and TOF.
- Requirements for a pair being identified as Lambda depend on the type of information available for the daughters.
Measuring polarization

- Initial measurement of $\bar{P}_{\Lambda/\bar{\Lambda}}$ (in 2007) at 200 GeV consistent with zero.
- Analysis of BES-I energies show $\bar{P}_{\Lambda/\bar{\Lambda}} > 0$

Measuring polarization

- Initial measurement of $\bar{P}_{\Lambda/\bar{\Lambda}}$ (in 2007) at 200 GeV consistent with zero.
- Analysis of BES-I energies show $\bar{P}_{\Lambda/\bar{\Lambda}} > 0$
- A new door opened for plenty of physics:
 - Energy dependence
 - Longitudinal polarization
 - Spin-spin correlations
 - QGP vorticity
 - Late-stage magnetic field
 - And more!

Quantification of polarization

Angular momentum of the system is straightforward to calculate, and simulations aim to estimate expected polarization by answering:

- How much angular momentum is transferred to the QGP?
- How much of the angular momentum in the QGP is transferred to the quarks?
- How much of the quark polarization is transferred to the final-state hadrons?

Collision-energy dependence

- Higher energies have longer-lived systems, but lower energies have more angular momentum transferred to the system
 - The collision-energy dependence is not immediately obvious

- Simulations show inverse relationship using UrQMD+vHLLE, PICR, and AMPT1-4.

Collision-energy dependence

- Will we see a drop-off at the critical point?
 - Not necessarily – hadron interactions within a system of large angular momentum can still yield spin polarization... *but...* interesting to look anyways
Collision-energy dependence

- Need to study these effects at fixed-target energies
 - Anti-lambda yield very low, so stick with Lambdas
 - $\sqrt{s_{NN}} = 3, 4.5$ GeV Au+Au collisions at STAR
 - Analysis by Joseph Adams
 - Analysis is ready; waiting for production of data
Collision-energy dependence

- Need to study these effects at fixed-target energies
 - Anti-lambda yield very low, so stick with Lambdas
 - $\sqrt{s_{\text{NN}}} = 3, 4.5$ GeV Au+Au collisions at STAR
 - Analysis by Joseph Adams
 - Analysis is ready; waiting for production of data
 - $\sqrt{s_{\text{NN}}} = 2.4$ GeV Au+Au collisions at HADES
 - Analysis by Frederic Kornas
 - Preliminary results show drop-off!

F. Kornas for the HADES Collaboration, Λ polarization in Au+Au collisions at $\sqrt{s_{\text{NN}}} = 2.4$ GeV Measured with HADES. Hirschegg 2019.
Longitudinal polarization

- Spin alignment perpendicular to the reaction plane implies vorticity in the reaction plane
 - Due to angular momentum of the system
Longitudinal polarization

- Spin alignment perpendicular to the reaction plane implies vorticity in the reaction plane
 - Due to angular momentum of the system
Longitudinal polarization

- Spin alignment perpendicular to the reaction plane implies vorticity in the reaction plane
 - Due to angular momentum of the system
Longitudinal polarization

- Spin alignment perpendicular to the reaction plane implies vorticity in the reaction plane
 - Due to angular momentum of the system

- Spin alignment perpendicular to the transverse plane (longitudinal) implies vorticities in the transverse plane
 - Due to expansion of the system
Longitudinal polarization

- Spin alignment perpendicular to the reaction plane implies vorticity in the reaction plane
 - Due to angular momentum of the system
- Spin alignment perpendicular to the transverse plane (longitudinal) implies vorticities in the transverse plane
 - Due to expansion of the system
Longitudinal polarization

- Spin alignment perpendicular to the reaction plane implies vorticity in the reaction plane
 - Due to angular momentum of the system
- Spin alignment perpendicular to the transverse plane (longitudinal) implies vorticities in the transverse plane
 - Due to expansion of the system
Longitudinal polarization

- Measure with $\langle \cos(\theta_p^*) \rangle$ as a function of $\varphi_{\Lambda/\bar{\Lambda}} - \Psi_2$
 - As opposed to $\langle \sin(\psi_1 - \varphi_{p^+/\pi^+}^*) \rangle$ from before
Longitudinal polarization

- Measure with $\langle \cos(\theta_p^*) \rangle$ as a function of $\varphi_{\Lambda/\bar{\Lambda}} - \Psi_2$
 - As opposed to $\langle \sin(\psi_1 - \varphi_{p^+/\pi^+}^*) \rangle$ from before

- Measurements agree qualitatively with expectations
 - Analysis by Takafumi Niida

J. Adam, et. al. Polarization of $\Lambda (\Lambda^-)$ hyperons along the beam direction in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV. arXiv:1905.11917 [nucl-ex]
QGP vorticity

- The averaged \bar{P}_Λ and $\bar{P}_\bar{\Lambda}$ allows us to measure the vorticity of the system.
- Magnitude and energy dependence match observation

$$\bar{P}_{\Lambda/\bar{\Lambda}} = \bar{P}_{\Lambda/\bar{\Lambda}, \bar{\omega}} + \bar{P}_{\Lambda/\bar{\Lambda}, \vec{B}}$$

$$\bar{P}_{\Lambda, \bar{\omega}} = \bar{P}_{\bar{\Lambda}, \bar{\omega}}$$

$$\bar{P}_{\Lambda, \vec{B}} = -\bar{P}_{\bar{\Lambda}, \vec{B}}$$

$$\frac{\bar{P}_{\bar{\Lambda}} + \bar{P}_\Lambda}{2} \propto |\bar{\omega}_{QGP}|$$
QGP vorticity

- The averaged \bar{P}_Λ and $\bar{P}_{\bar{\Lambda}}$ allows us to measure the vorticity of the system.
- Magnitude and energy dependence match observation.

\[
\bar{P}_{\Lambda/\bar{\Lambda}} = \bar{P}_{\Lambda/\bar{\Lambda}, \bar{\omega}} + \bar{P}_{\Lambda/\bar{\Lambda}, \bar{B}} \\
\bar{P}_{\Lambda, \bar{\omega}} = \bar{P}_{\bar{\Lambda}, \bar{\omega}} \\
\bar{P}_{\Lambda, \bar{B}} = -\bar{P}_{\bar{\Lambda}, \bar{B}} \\
\frac{\bar{P}_{\Lambda} + \bar{P}_{\bar{\Lambda}}}{2} \propto |\bar{\omega}_{QGP}|^*
\]

Assuming no feeddown
QGP vorticity

- The averaged \vec{P}_Λ allows us to measure the vorticity of the system.
- Magnitude and energy dependence match observation.

$$
\begin{pmatrix}
\omega_c \\
B_c/T
\end{pmatrix} =
\left[
\begin{array}{c}
\frac{2}{3} \sum_R \left(f_{\Lambda R} C_{\Lambda R} - \frac{1}{3} f_{\Sigma^0 R} C_{\Sigma^0 R} \right) S_R(S_R + 1) \\
\frac{2}{3} \sum_R \left(f_{\Lambda R} C_{\Lambda R} - \frac{1}{3} f_{\Sigma^0 R} C_{\Sigma^0 R} \right) S_R(S_R + 1)
\end{array}
\right]^{-1}
\begin{pmatrix}
P_{\Lambda \text{meas}}^\Lambda \\
P_{\Lambda \text{meas}}^\Lambda
\end{pmatrix}
$$

QGP vorticity

- The averaged \bar{P}_Λ and $\bar{P}_{\bar{\Lambda}}$ allows us to measure the vorticity of the system

- Magnitude and energy dependence match observation
QGP vorticity

- The averaged \bar{P}_Λ and $\bar{P}_{\bar{\Lambda}}$ allows us to measure the vorticity of the system.

- Magnitude and energy dependence match observation.

Spin-spin correlations

- Analogy to classic HBT
 - Momentum correlations yield information about size of momentum-space homogeneity regions

Spin-spin correlations

- Analogy to classic HBT
 - Momentum correlations yield information about size of momentum-space homogeneity regions
- Momentum distributions tell us a lot (e.g. hydro)
Spin-spin correlations

- Analogy to classic HBT
 - Momentum correlations yield information about size of momentum-space homogeneity regions
- Momentum distributions tell us a lot (e.g. hydro)
- Identical-particle momentum correlations yield *sub-QGP* momentum information
Spin-spin correlations

- Analogy to classic HBT
 - Momentum correlations yield information about size of momentum-space homogeneity regions
- Global polarization tells us there is large vorticity
Spin-spin correlations

- Analogy to classic HBT
 - Momentum correlations yield information about size of momentum-space homogeneity regions
- Global polarization tells us there is large vorticity
- Spin-spin correlations yield sub-QGP vorticity information
 - Analysis by Isaac Upsal
Spin-spin correlations

- Analogy to classic HBT
 - Momentum correlations yield information about size of momentum-space homogeneity regions

- Global polarization tells us there is large vorticity

- Spin-spin correlations yield sub-QGP vorticity information
 - Analysis by Isaac Upsal
Spin-spin correlations

○ Analogy to classic HBT
 ▪ Momentum correlations yield information about size of momentum-space homogeneity regions

○ Global polarization tells us there is large vorticity

○ Spin-spin correlations yield sub-QGP vorticity information
 ▪ Analysis by Isaac Upsal

Late-stage magnetic field

\[\mu_B \langle \vec{S}_{\vec{B}, \text{hadrons}} \rangle \parallel \vec{B}_{\text{QGP}} \]

\[\vec{B}_{\text{System}} \propto \mu_B \langle \vec{S}_{\vec{B}} \rangle \]
Late-stage magnetic field

\[\mu_B \langle \vec{S_B}, \text{hadrons} \rangle \parallel \vec{B}_{QGP} \]

\[
\begin{align*}
\bar{P}_{\Lambda/\bar{\Lambda}} &= \bar{P}_{\Lambda/\bar{\Lambda}, \bar{\omega}} + \bar{P}_{\Lambda/\bar{\Lambda}, \vec{B}} \\
\bar{P}_{\Lambda, \bar{\omega}} &= \bar{P}_{\bar{\Lambda}, \bar{\omega}} \\
\bar{P}_{\Lambda, \vec{B}} &= -\bar{P}_{\bar{\Lambda}, \vec{B}} \\
\bar{P}_{\Lambda} - \bar{P}_{\bar{\Lambda}} &\propto |\vec{B}_{QGP}|
\end{align*}
\]
Late-stage magnetic field

\[\vec{P}_{\Lambda/\bar{\Lambda}} = \vec{P}_{\Lambda/\bar{\Lambda}, \omega} + \vec{P}_{\Lambda/\bar{\Lambda}, \bar{B}} \]

\[\vec{P}_{\Lambda, \omega} = \vec{P}_{\bar{\Lambda}, \bar{\omega}} \]

\[\vec{P}_{\Lambda, \bar{B}} = -\vec{P}_{\bar{\Lambda}, \bar{B}} \]

\[\vec{P}_{\bar{\Lambda}} - \vec{P}_{\Lambda} \propto |\vec{B}_{QGP}|^* \]

*Assuming no feeddown
Late-stage magnetic field

• The magnetic field is essential for the measurement of local-parity- and charge-parity-violation observables
 • Dileptons are tools with which to probe the early-stage field strength

Late-stage magnetic field

- The magnetic field is essential for the measurement of local-parity- and charge-parity-violation observables
 - Dileptons are tools with which to probe the early-stage field strength
- Late-stage magnetic field measurement is a gauge for the electrical conductivity, σ_{QGP}
 - Lambdas are tools with which to probe the late-stage field strength

Search for the magnetic field

From the recent *Nature* paper:

Relativistic heavy ion collisions are expected to produce intense magnetic fields parallel to \hat{f}_{sys}. Coupling between the field and the intrinsic magnetic moments of emitted particles may induce a larger polarization for $\bar{\Lambda}$ hyperons than for Λ hyperons. This is not inconsistent with our observations, but probing the [magnetic] field will require more data to reduce statistical uncertainties as well as potential effects related to differences in the measured momenta of Λ and $\bar{\Lambda}$ hyperons.

Search for the magnetic field

From the recent *Nature* paper:

Relativistic heavy ion collisions are expected to produce intense magnetic fields parallel to \hat{J}_{sys}. Coupling between the field and the intrinsic magnetic moments of emitted particles may induce a larger polarization for $\bar{\Lambda}$ hyperons than for Λ hyperons. This is not inconsistent with our observations, but probing the [magnetic] field will require more data to reduce statistical uncertainties as well as potential effects related to differences in the measured momenta of Λ and $\bar{\Lambda}$ hyperons.

We’ve got more data!

The STAR Collaboration, *Global Lambda hyperon polarization in nuclear collisions: evidence for the most vortical fluid.* Nature **548** (2017) 62

From the recent Nature paper:

Relativistic heavy ion collisions are expected to produce intense magnetic fields parallel to the beam. Coupling between the field and the intrinsic magnetic moments of emitted hyperons may induce a larger polarization for \(\bar{\Lambda} \) hyperons than for \(\Lambda \) hyperons. This is not inconsistent with our observations, but probing the [magnetic] field will require more data to reduce statistical uncertainties as well as potential effects related to differences in the measured momenta of \(\Lambda \) and \(\bar{\Lambda} \) hyperons.

We've got more data!
Measuring \hat{L}_{QGP}

- Significant increase in event-plane resolution from the newly installed Event Plane Detector
Measuring \hat{L}_{QGP}

- The EPD has far more coverage than the BBC

East EPD hits rotated by $\Psi_{1,\text{EPD West}}$

Measuring \hat{L}_{QGP}

- The EPD has far more coverage than the BBC
- MUST take into account flow!
 - Otherwise, near-zero resolution

East EPD hits rotated by $\Psi_{1,\text{EPD West}}$
Measuring \hat{L}_{QGP}

- The EPD has far more coverage than the BBC
- MUST take into account flow!
 - Otherwise, near-zero resolution

East EPD hits rotated by $\Psi_{1,\text{EPD West}}$

Positive flow obvious over few tiles
Measuring \hat{L}_{QGP}

- The EPD has far more coverage than the BBC
- MUST take into account flow!
 - Otherwise, near-zero resolution

East EPD hits rotated by $\Psi_{\text{EPD West}}$

- Negative flow barely visible over many tiles
- Positive flow obvious over few tiles
Increase in statistics

• We currently are only looking at ~40% of the data
 • An unfortunate TPC space charge issue caused by the beam abort gap is making TPC calibration more challenging

QA study by Prithwish Tribedy
Increase in statistics

• We currently are only looking at ~40% of the data
 • An unfortunate TPC space charge issue caused by the beam abort gap is making TPC calibration more challenging
• Data was recently re-produced following the realization of a bug in the tracking software
 • Analysis is ongoing
Summary

- A long-awaited confirmation of $\bar{P}_{\Lambda/\bar{\Lambda}} > 0$ was provided by the STAR collaboration.
- Many new avenues of polarization study now available.
- Ongoing study could yield potentially very exciting results!
 - Low-energy polarization drop-off?
 - Significant splitting between \bar{P}_Λ and $\bar{P}_{\bar{\Lambda}}$?