Future Heavy Flavor and Quarkonia

Measurements from sPHENIX

Yuanjing Ji
(for sPHENIX collaboration)

Lawrence Berkeley National Laboratory
University of Science and Technology of China
sPHENIX science mission

There are two central goals of measurements planned at RHIC, as it completes its scientific mission, and at the LHC: (1) **Probe the inner workings of QGP by resolving its properties at shorter and shorter length scales.** The complementarity of the two facilities is essential to this goal, as is a state-of-the-art jet detector at RHIC, called sPHENIX. (2) **Map the phase diagram of QCD with experiments planned at RHIC.**
Core sPHENIX physics program

Jet cor. & substructure
Vary momentum/angular size of probe

Parton energy loss
Vary mass/momentum of probe
- g
- u,d,s
- c
- b

Upsilon spectroscopy
Vary size of the probe
- $\Upsilon(2s)$ – 0.56 fm
- $\Upsilon(3s)$ – 0.78 fm
- $\Upsilon(1s)$ – 0.28 fm

This talk: Heavy flavor and quarkonia physics
sPHENIX detector

High luminosity
High rate

15 kHz trigger
>10 GB/s data

Full ϕ coverage

For $|z|<10$ cm: $|\eta|<1.1$
sPHENIX tracking system

Outer tracker:
- **TPC** (20 cm < r < 78 cm):
 - gateless and continuous readout
 - Provide momentum measurement

Inner tracker:
- **INTT** (6 cm < r < 12 cm):
 - strip silicon sensors (2-layer)
 - Pattern recognition, timing
- **MVTX** (2.3 cm < r < 3.9 cm):
 - MAPS pixel sensors (3-layer)
 - Procurement copies of ALICE ITS IB staves integrated into sPHENIX
 - Precision vertexing
Au+Au @ 200 GeV at 15 kHz for |z| < 10 cm: Total 239 billion events

p + p @ 200 GeV at 15 kHz for |z| < 10 cm: Total 8300 billion sampling events

High statistics!
Precision Upsilon spectroscopy

Why Υ @ RHIC?
Regeneration is smaller compared to J/ψ;
Less effect from bottom coalescence;
Temperature dependence of Debye screening length.

Quarkonium:
Color screening \rightarrow dissociation

Different binding energy and radii of different states
\rightarrow “Sequential melting”

QGP “Thermometer”
A. Mocsy, EPJ C61, 705 (2009)

Illustration: A. Rothkopf
Precision Upsilon

Challenge:
Small production cross section
\(\sim \bar{b}b \) pair 0.05/event

Goal:
Separate \(\Upsilon(1s)/\Upsilon(2s)/\Upsilon(3s) \)

Requirement:
\(\delta M / M < 125 \text{ MeV} \)

Tracking efficiency
> 90% efficiency

Momentum resolution
\(\delta p/p < 2\% \) for \(p_{T} < 10 \text{ GeV/c} \)

Central Au+Au
\(sPHENIX \) simulation

\(p + p \)
\(sPHENIX \) simulation
Electron identification

- $\gamma(ns) \rightarrow ee$
- Use E_{CEMC}/p for eID
 - E_{CEMC} is the energy deposit in central EMC
- Hadron rejection factor is considered
 - $K/\pi/p/\bar{p}$
- 90% eID efficiency

Hadron rejection factor
= electron efficiency / hadron efficiency

Inverse pion rejection factor
Upsilon signal projections

- sPHENIX provides excellent mass resolution.

\[\Upsilon(ns) \rightarrow ee \]
Upsilon R_{AA} projections

- Precise $\Upsilon(1s)$ and $\Upsilon(2s)$ R_{AA} measurement is expected at $0 < p_T < 8$ GeV.

MVTX: enable HF physics!

In close coordination with ALICE / ATLAS Phase-I upgrade

-Sensors:
ALICE ALPIDE sensors identical ITS/IB design

-Readout:
ALICE frontend Readout Unit(RU)
ATLAS upgrade backend FELIX boards

-Mechanics:
Modified mechanical frame design for sPHENIX

MVTX: 3-layer MAPS pixel sensors
Active length 27 cm
~8 cm

Hit spatial resolution: < 5 μm

MVTX spatial resolution full chain test beam at FNAL @2018
Heavy flavor observables

- Precision vertex tracker + Good momentum resolution + High rate → Precision charm/bottom observables over wide scales
- B-meson @ $2 < p_T < 10$ GeV/c, b-jet @ $15 < p_T < 35$ GeV/c
- Goals:
 - Diffusion of HF quark in QGP, differentiate collision and radiative energy loss, HF hadronization

`sPHENIX` simulation

`sPH-HF-2018-001 - MVTX Proposal`
Precise $B \rightarrow D$ measurement

- Explore $B \rightarrow D$ (non-prompt D meson) through D^0 DCA distribution

![Graph showing prompt and non-prompt D-meson distributions](image)

$B \rightarrow D^0 + X$
Non-prompt D projections

- Explore $B \rightarrow D$ (non-prompt D meson) through D^0 DCA distribution
- High statistics and significance B meson via non-prompt D decay

After a BDT tagger

Prompt and non-prompt D-meson
Non-prompt D projections

- High precision non-prompt-D suppression @ RHIC
 - Collisional and radiative energy loss
- Determine the bottom quark collectivity
 - clean access to D_{HQ} at RHIC energy
 non-prompt D-meson and predictions for sPHENIX
Precise B^+ measurement

- Reconstruct B^+ through $B^+ \rightarrow D^0 \pi^+$
- Beautiful signal event at $p_T < 2$ GeV

![sPHENIX Simulation](image)
Precise B^+ measurement

- Reconstruct B^+ through $B^+ \rightarrow D^0 \pi^+$
- Beautiful signal event at $p_T < 2$ GeV
- Precise B^+ spectra measurement is expected.
b-jet tagging @ sPHENIX

- sPHENIX is an excellent jet detector
- b-jet: very small cross section
- B-hadron decay topology:
 - decay length ~ few mm
 - decay to multi-particles.

Algorithms for b-jet tagging:
- Tracking counting tagging:
 - Count No. of tracks > DCA cut
- Secondary vertex tagging:
 - multiple tracks coming from the same secondary vertex.
b-jet tagging @ sPHENIX

- Demonstrate b-jet capability: tagging algorithms evaluated using full detector HIJING simulation
- Reaching an optimal working point in central Au+Au collisions

Track-counting tagger

Secondary-vertex tagger

b-jet projection

- High precision inclusive b-jet suppression and v_2 measurement @ RHIC
- Strong constraints on energy loss model of high energy probe in QGP.

Working point:
- p+p 60% purity 40% efficiency
- Au+Au 40% purity 40% efficiency
Broader topic: Bottom observables

Opportunities for new ideas and new measurements!

- HF-jet-jet
- jet-HF-hadron
- D-\bar{D} correlations
- HF jet substructure
- Total b-cross section
- other B decay channels
 - $B \to J/\psi$ and more?

$\frac{p_{T,2}}{p_{T,1}}$ Di-b-jet p_T asymmetry
Λ_c production @ RHIC

- Heavy quark hadronization mechanism
- Strong enhancement of Λ_c/D^0 ratio compared to PYTHIA calculations.
 - Coalescence hadronization;
 - Λ_c contributes sizably to the total charm cross section.

\[\Lambda_c^+ = udc \]
\[ct = 59.9 \mu m \]
\[\Lambda_c^+ \rightarrow K^-\pi^+ (6.23\%) \]

Explore capability of Λ_c measurement at future sPHENIX experiment!
Particle identification scenarios

1. **No PID**
 - currently default in the simulation.

2. **clean PID**
 - at low pT enabled by TOF, no PID at high pT.
 - K/π separation up to 1.6 GeV/c, protons up to 3 GeV/c;
 - TOF matching efficiency (~58%) taken from STAR.

3. **Hybrid PID**
 - TOF PID if matched to TOF;
 - otherwise no PID.

4. **Ideal TOF PID**
 - similar as 2, but assuming 100% TOF matching efficiency.
• Precise measurement of Λ_c is expected at sPHENIX at 0-80%;
• PID detector helps suppress the background significantly.
Projected Λ_c significance

Most central collision

- Very nice performance at $p_T > 3$ GeV in 0-10%;
- Low p_T (< 2 GeV) measurement might need the help from PID detector in 0-10%;
- Enable more precise centrality dependence study.

Most peripheral collision
Summary

• Rich heavy flavor physics opportunity at sPHENIX
 • Upsilon: Color screening length
 • b-jets, B mesons: HF energy loss in QGP, HF diffusion coefficient
 • HF baryons: HF hadronization mechanism

• sPHENIX construction ramping up. First data in 2023
 • Successful PD 2/3 review
 • MVTX electronics and sensor staves production starting soon at CERN
sPHENIX collaboration

Currently 77 institutions
sPHENIX collaboration

Currently 77 institutions

Thank you!
• Back up slides
MVTX beam test @ FNAL 2019
Λ_c simulation @ sPHENIX

Signal:
Decay Λ_c by EventGen;
Λ_c p_T weight: $\Lambda_c/D^0 \times D^0$ spectra fitted to STAR data.

Combinatorial background
Particles from primary vertex:
Sample the p_T, η, φ of particles
Particles from secondary vertex:
Charm decay $K/\pi/p$
Generated by PYTHIA 8
Tracking

$p + p, \sqrt{s} = 200 \text{ GeV}$
di-b-jet production at $p_T \approx 40 \text{ GeV/c}$
Science mission: Complementarity of RHIC and LHC

High p_T @LHC:
Extend kinematic reach vs RHIC
Add new probes

Overlap in kinematic reach:
Study the same probe for different QGP evolution

High p_T @LHC:
Extend kinematic reach vs RHIC
Add new probes
5-years run plan

Table 1: Five-year run plan scenario for sPHENIX. The recorded luminosity (Rec. Lum.) and first sampled luminosity (Samp. Lum.) values are for collisions with z-vertex $|z| < 10$ cm. The final column shows the sampled luminosity for all z-vertex values, relevant for calorimeter only measurements.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Year-1</td>
<td>Au+Au</td>
<td>200</td>
<td>16.0</td>
<td>7 nb$^{-1}$</td>
<td>8.7 nb$^{-1}$</td>
<td>34 nb$^{-1}$</td>
</tr>
<tr>
<td>Year-2</td>
<td>p+p</td>
<td>200</td>
<td>11.5</td>
<td>—</td>
<td>48 pb$^{-1}$</td>
<td>267 pb$^{-1}$</td>
</tr>
<tr>
<td>Year-2</td>
<td>p+Au</td>
<td>200</td>
<td>11.5</td>
<td>—</td>
<td>0.33 pb$^{-1}$</td>
<td>1.46 pb$^{-1}$</td>
</tr>
<tr>
<td>Year-3</td>
<td>Au+Au</td>
<td>200</td>
<td>23.5</td>
<td>14 nb$^{-1}$</td>
<td>26 nb$^{-1}$</td>
<td>88 nb$^{-1}$</td>
</tr>
<tr>
<td>Year-4</td>
<td>p+p</td>
<td>200</td>
<td>23.5</td>
<td>—</td>
<td>149 pb$^{-1}$</td>
<td>783 pb$^{-1}$</td>
</tr>
<tr>
<td>Year-5</td>
<td>Au+Au</td>
<td>200</td>
<td>23.5</td>
<td>14 nb$^{-1}$</td>
<td>48 nb$^{-1}$</td>
<td>92 nb$^{-1}$</td>
</tr>
</tbody>
</table>

Table 2: Summary of integrated samples summed for the entire five-year scenario.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Au+Au</td>
<td>200</td>
<td>35 nb$^{-1}$ (239 billion)</td>
<td>80 nb$^{-1}$ (550 billion)</td>
<td>214 nb$^{-1}$ (1.5 trillion)</td>
</tr>
<tr>
<td>p+p</td>
<td>200</td>
<td>—</td>
<td>197 pb$^{-1}$ (8.3 trillion)</td>
<td>1.0 fb$^{-1}$ (44 trillion)</td>
</tr>
<tr>
<td>p+Au</td>
<td>200</td>
<td>—</td>
<td>0.33 pb$^{-1}$ (0.6 trillion)</td>
<td>1.46 pb$^{-1}$ (2.6 trillion)</td>
</tr>
</tbody>
</table>
Upsilon measurement by STAR

STAR Preliminary

STAR Au+Au @ 200 GeV (0-60%)
Γ(1S) → μ⁺μ⁻, |y|<0.5

CMS Pb+Pb @ 2.76 TeV (0-100%)
Γ(1S), |y|<2.4