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Initialize MUSIC with net baryon density
Since baryon number is conserved,

For Glauber initial conditions, we assume

⇢̃B(x?) = npart(x?)

⌘ TA(x?) + TB(x?),
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Dissipative hydrodynamics
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Dissipative part:
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Code Check
1+1D cross check:

MUSIC results agree very well with Akihiko’s results
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Code Check

• MUSIC with baryon 
propagation passed 
ideal Gubser flow test 
for the transverse 
dynamics
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Cooper-Frye freeze-out
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Using relaxation time approximation,

    is calculated using hadron resonance gas model̂(T, µB)
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P. Huovinen and H. Petersen, Eur. Phys. J. A 48, 171 (2012)

Freeze-out hyper surface is determined 
using Cornelius freeze-out algorithm
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is conserved

• With diffusion,      is essential to ensure net baryon number 
conservation

�f
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Results
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Light meson spectra and v2

• At top RHIC energy, finite      and diffusion have little 
effects on pion spectra and v2 at mid-rapidity
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• Baryon diffusion reduces radial flow;      makes the 
pion spectra flatter

�f
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• Baryon diffusion increases pion v2(pT);      increases 
pion v2 at high 

�f
pT



proton vs anti-proton spectra and v2
Solid: with diffusion; Dashed: no diffusion; Dash-dotted: no ⇢B

• Baryon diffusion has small effects on proton, antiproton 
spectra and v2 at top RHIC energy

p
s = 200AGeV
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• Baryon diffusion slightly increases               ; but it 
reduces the difference in v2 between proton and 
antiproton
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proton vs anti-proton spectra and v2

p
s = 19.6AGeV

• Baryon diffusion reduces v2 asymmetry between 
protons and anti-protons;      corrections increase the 
difference

�f
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Solid: with       ; Dash-dotted: no       ; Dashed no diffusion �f �f



Conclusion
• We present preliminary (3+1)-d viscous hydrodynamic 

simulations including net baryon diffusion for the RHIC 
BES program 

• Evolving more conserved currents, including initial state 
fluctuations, and coupling to UrQMD will come soon

• Out-of-equilibrium      corrections from baryon diffusion 
is essential to ensure net baryon number conservation

�f

• Baryons and anti-baryons receive large opposite 
corrections from baryon diffusion     �f

• Baryons diffusion reduce the proton antiproton v2 
asymmetry at the low collision energies
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Stabilizing MUSIC with diffusion
qµWe implement quest_revert for      to stabilize the hydro 

evolution with diffusion,

⇠q ⌘
p�qµqµ
|⇢B |

1

prefactor⇥ tanh(e/edec)

prefactor = 300

If ⇠q > ⇠max

q

q̃µ =
⇠max

q

⇠q
qµ

⇠max

q = 0.1

The size of     qµ

q0 =
uiqi

u0
uµqµ = 0



Stabilizing MUSIC with diffusion
qµWe implement quest_revert for      to stabilize the hydro 

evolution with diffusion,

most of the modifications are at the edges of the fireball


