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Why I Think You Should Know 
About This Work 

• This paper provides an interesting approach 
into how to elucidate dynamic protein 
movements from static structural information. 
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Why I am Interested in This Work 

• My lab is undertaking a new project involving 
Burkholderia pseudomallei efflux pumps 
AmrAB-OprA and BpeAB-OprB. 

• The AcrA-AcrB-TolC complex is an analogous 
structure. 

• Have been reading papers on different efflux 
pumps to gain insights into how to approach 
this new project. 
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Background 

• AcrA-AcrB-TolC complex is the major 
multidrug resistance efflux pump of E. Coli. 

• The inner membrane protein, AcrB, is trimeric 
with both a symmetric and asymmetric trimer 
structure having been reported. 

• Asymmetry of the trimer is the potential 
biologically relevant structure displaying 
stages of pump operation. 
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Background-General Structure of AcrA-AcrB-TolC 

1. TolC forms a pore through the 
outer membrane. 

2. AcrB represents the pump 
mechanism of the system. 

3. AcrA likely transmits allosteric 
movements from AcrB to TolC. 

4. AcrB requires a proton motive 
force for its action. 
 
 
 
 

Data on AcrA location based primarily 
on homology modeling of MexA and 
also from some N and C regions of AcrA 
present in crystal structure of AcrB and 
TolC. Exact conformation however is 
unknown.  

 



Proposed Mechanism 
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• The conversion from the T monomer to 
the O monomer is accompanied by the 
release of a proton from the proton 
translocation site to the cytoplasm  

 
• The structural changes in the T 

monomer create a hydrophobic pocket 
 

• In the T monomer, the tunnel leads to 
residues of the O monomer PN1 
subdomain, which operates as a plug for 
the tunnel exit.  
 

• In the O conformation, the tilting of the 
PN1 subdomain opens an exit pathway 
from the binding pocket. 
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Table 1 Distances of residues and degree of disulfide cross-linking 

Linked subdomains• 

cysteine residues 

PC2-TM 7 (contro l)d 

R558C_E839C 

PC2-TM7 

S562C_T837C 

PN1 -PN2 

Sl32C_A294C 

PN2-TM1 

V32C_N298C 

V32C_A299C 

Loor:}-DC (functional control) 

S233C_Q726C 

1235C_K728C 

V225C_A777C 

Loop-PC I 

Q229C_ T583C 

Q229C_R586C 

Distance between Sy [Alb 

L 

16.2 

10.9 

6.3 

7.2 

9.5 

5.2 

5.0 

5.1 

5.8 

5.5 

Monomer 

T 

14.0 

10.7 

17.5 

3.5 

4.8 

5.9 

5.0 

5.2 

7.4 

7.8 

0 

10.3 

3.3 

11.1 

7.0 

11.9 

6.3 

5.1 

5.3 

6.4 

6.7 

Disulfide cross

links [%]< 

-9.5 ± 4.7• 

15.4 ± 1.3• 

41.6 ± 0.6 

41.3 ± 1.2 

18.l ± 1.0 

17.0 ± 0.4 

23.8 ± 0 .6 

80.2 ± 1.3 

69.4 ± 0.5 

46.4 ± 0 .5 

1. Loop and PCl domain show strong cross linking as would be expected from proximity 
in crystal structure. 

2. However, loop-DC domain showed relatively little crosslink. Possibly due to side chain 
rigidity in B-sheet. 

3. Negative control is devoid of cross links. 
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Disulfide Cross-Link Quantification 
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Engineered Disulfide Bond Locations 

PN2-TM1 
V32C N298C 
V32C A299C 

PN1-PN2 
S132C A294C 

PC2-TM7 
R558C E839C 
(control ) 
S562C T837C 

TolC 

1. Blue(L), Yellow(T), Red (0) conformations 
are shown superimposed on L monomer. 

2. (a) represents a side view of the AcrB 
trimer, (b) represents a top view. 

3. Generally, this figure shows the 
engineered cysteines in the monomer 
conformation (L,T, or 0) which brings 
them into close proximity to one 
another. 
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Single and Double Cysteine Mutants 
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Purified AcrB Constructs 
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MIC Data 
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N-Phenylnaphthylamine {NPN) Efflux Assay 
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1. NPN fluoresces strongly in hydrophobic environment of bacterial inner 
membrane. 

2. Disulfide cross link reduction restores pump activity. 
3. Negative control in panel a is an inactivating mutant. 
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MIC and Efflux Assay Correlation 
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• PC2-TM7 mutant had a relatively 
low level of cross linking, yet 
showed somewhat high MIC 
reduction. 
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conformation is locked while L 
and T can shift back and forth. 

Assay and MIC values do not 
agree with PN2-TM1 cross link . 
Possibly specific to NPN since 
some but not all substances 
showed reduced MIC in this 
mutant. 
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Conclusions 
• Disulfide bonds can be formed between locations 

too far for bridge formation in the symmetrical AcrB 
structure. 

• Disulfide bridges do not form between regions too 
distant from one another in asymmetric model. 

• Disulfide bridge formation lowers MIC of several 
antibiotics. 

• MIC value can be recovered by reducing  the 
disulfide bonds with DTT 

• All of this data suggests that allosteric movements, 
like those observed in the asymmetric crystal 
structure, are necessary for proper efflux pump 
operation. 15 



Take-Home Message 

• This paper provides biochemical data to explain 
structural data from crystallographic study.  

• Provides evidence that the asymmetric trimer is 
the functional biological unit and not an artifact 
of crystallization.  

• If the original symmetric structure was the 
biological unit, it is likely that cross linking would 
not be extensively observed and that any cross 
links present would have little functional impact. 
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