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ME-models (Metabolism and Expression): integrate
metabolic and gene product expression pathways

» First ME-model for E.coli
»Incorporate gene express and proteomic data
» Predict several cellular phenotypes

»Provide a method that can be used to simulate
growth and changes in genome scale systems

»Develop into a powerful approach to integrate
transcriptomics data with metabolic networks in plant



M-models (metabolic) vs. ME-models
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*Predict reaction flux
eGenes are either ON or OFF

Nature Communications 2012, 3: 929

C ﬁ;ﬁ
I\Q}:—

NTPs o Transcription

mRANA o mANA
degradation dilution

) s

MMPs | Transiation ]
5]
AlAs

e ¢

Complax Complex
formation o

*Add transcription and translation
eAccount for RNA generation and
degradation

eAccount for peptide creation and
degradation

*Gene expression and gene products
explicitly modeled and predicted



M-models vs. ME-models (continued)
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eAccount for total biomass reaction

T, was integrated to define a biomass
reaction

P used to find max growth subject to
(measured) uptake rate

ME-models

eAccount only for “constant” cell
structure

=Cofactors like Coenzyme A

=*DNA like dCTP, dGTP

=Cell wall lipids

"Energy necessary to create and

maintain them
*Model approximates a cell whose
composition is a function of
environment and growth rate
eCellular composition (MRNA, tRNA,
ribosomes) taken into account as
dynamic reactions
*LP used to identify the minimum
ribosome production rate required
to support an experimentally
determined growth rate

Nature Communications 2012, 3: 929



ME-model: the details
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Integration of genome-scale reaction
networks of protein synthesis and metabolism

1101366
(this study)
Included genes 1366 (32%)°
Experimentally based 1328 (97%)
function
Computationally predicted 38 (3%)
function
Unique functional proteins 1254
Multigene complexes 185
Genes involved in complexes 483
Instances of isozymes” 380
Reactions 2251
Metabolic reactions 1473
Unique metabolic reactions® 1424
Cytoplasmic 1272
Periplasmic 193
Extracellular 8
Transport reactions 778
Cytoplasm to periplasm 447
Periplasm to extracellular 329
Cytoplasm to extracellular 2

Gene-protein-reaction associations
Gene associated (metabolic/ 1382/706
transport)
Spontaneous/diffusion 21/14
reactions”
Total (gene associated and ~ 1403/720 (949
no association needed)
No gene association 70/58 (6%)
(metabolic/transport)

Exchange reactions 330
Metabolites
Unigue metabolites 1136
Cytoplasmic 1039
Periplasmic 442
Extracellular 324
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I: Transcription; [I: mRNA degradation; llI: translation; IV: protein
maturation; V: protein folding; VI: metallo-ion binding; VII: protein
complex formation; VIII: ribosome assembly; IX: RNA processing; X:
rRNA modification; XI: tRNA modification; Xll: tRNA charging.

Mol Syst Biol. 2011; 7: 535 PLoS Comput Biol. 2009 5(3): e1000312



Growth demands and general
constraints on molecular catalysis
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Figure 1. Growth demands and coupling constraints leading to growth rate-dependent
changes in enzyme and ribosome efficiency. (A) Three growth rate-dependent demand
functions derived from empirical observations determine the basic requirements for cell
replication. (B) Coupling constraints link gene expression to metabolism through the
dependence of reaction fluxes on enzyme concentrations.



Optimization procedure
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Batch and Janusian procedure:
*Biomass capacity constraint
ePerform a binary search

SNL procedure:

Uptake of nutrients

*Biomass capacity constraint

Batch

is lower than the

*Cells make as much protein as
possible and the proteins are not
saturated

*Two binary search procedures

imposed uptake

Janusian




Derivation of constraints on
molecular catalytic rates (1)

C i D
A 20
1_:1: 0.30 %
o - A o1 154
© Ay 5"
B 0.20 - 2 T o
£ A H § S 10 -
@ — =8
S © £
o 0.10 H = -
3 58
- » ME-Modal hyperbolic translation rate = o
T ME-Model constant translation rate L ¢ ME'MM_EI hyp_e*_tphm ansiation e
0.00 4 & Exporimantal 0 - Constant translation rate
| | | | | | | T T T T T T
00 02 04 06 08 10 12 0.0 0.5 1.0 15 20 25
Growth rate, p (h™7) Growth rate, pu (h™")

Figure 1. (C, D) RNA:protein ratio predicted by the ME-Model with two different coupling
constraint scenarios, one for variable translation rate versus growth rate (red lines) and
one for constant translation rate (orange lines). Experimental data in (C) obtained

from Scottet al (2010).



http://www.nature.com/msb/journal/v9/n1/full/msb201352.html�

Derivation of constraints on
molecular catalytic rates (2)
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Figure 1. (G) The cartoon depicts changes in extra- (blue) and intra- (green) cellular
substrate (circle) and product (triangle) concentrations and metabolic enzyme (orange)
and ribosome (purple/maroon) levels as the concentration of a growth-limiting nutrient
(and growth rate) increases. The dials show k_«/k_,,, the effective catalytic rate over the
maximum for metabolic enzymes (orange) and ribosomes (purple/maroon).



Derivation of constraints on
molecular catalytic rates (3)
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Figure 1. (E) Phosphotransferase system (PTS) transient activity following a glucose pulse
in a glucose-limited chemostat culture (red) and glucose uptake before the glucose pulse
(blue) is plotted as a function of growth rate. The data shown were obtained

from O’Brien et al (1980)). (F) Data from (E) are used to plot glucose uptake as a fraction of
PTS activity. The resulting value is the fractional enzyme saturation (black line). The
fractional enzyme saturation predicted by the ME-Model is plotted as a function of growth
rate under carbon limitation (red dots).
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Growth regions under varying
nutrient availability
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Figure 2. Predicted growth, yield, and secretion. (A) Predicted growth rate is plotted as a
function of the glucose uptake rate bound imposed in glucose minimal media (B)
Predicted growth rates as a function of uptake of a limiting nutrient with glucose in excess.
The shaded regions correspond to those as labeled in (A).



Effect of proteome limitation on
secretion phenotypes
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Figure 2. (C) Experimental (triangle) and ME-Model-predicted (circle) acetate secretion
in Nitrogen- (blue) and Carbon- (red) limited glucose minimal medium are plotted as a
function of growth rate. (D) Experimental (triangle) and ME-Model-predicted (circle)
carbon yield (gDW Biomass/g Glucose) in Carbon- (red) and Nitrogen- (blue) limited
glucose minimal medium are plotted as a function of growth rate



The general behavior in the
Janusian growth region
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During the Janusian transition, 1 increases through differential pathway expression

Figure 2. (E) The cartoon depicts changes in extra- (blue) and intra-
(green) cellular substrate (circle) and product (triangle) concentrations
and metabolic enzyme (blue/orange) and ribosome (purple/maroon)
levels during the Janusian region. The dials show k.¢/k_.,, the effective
catalytic rate over the maximum for metabolic enzymes (blue/orange)
and ribosomes (purple/maroon).

pathways that have
lower operating costs.
(Pathways with the
smaller blue proteins
taken to be 0.25 the
cost of the pathways
with larger orange
proteins.) A higher
glucose uptake and
turnover results, but
energy yield is lower
and some carbon is
‘wasted’ and secreted
(brown triangles).



B¢ relative flux

Central carbon fluxes reflect growth
optimization subject to catalytic constraints

Nutrient-limited Proteome-limited
I

1
200 - 200 200
A C
150 150 1 150
E E
100 1 2 100+ 2 100 1
o @
2 2 Acetate
501 s 507 & 50
. )
0 526 mmal ATPIGDW Y 07 slsmmOlATRIGOW Y 0 1 78.5 mmol ATP/gDW
0 50 100 150 200 0 50 100 150 0 50 100 150 200
ME-Model relative flux ME-Madel relative flux ME-Model relative flux

Increasing growth rate, n

Figure 3. Central carbon metabolic flux patterns under glucose-limited and glucose-excess
conditions. (A—C) Relative fluxes from 13C experiments are plotted versus the fluxes
predicted by the ME-Model. (A, B) Comparison of nutrient-limited model solutions with
chemostat culture conditions and (C) comparison of the batch ME-Model solution with

batch culture data.



Growth rate-dependent gene
expression under glucose limitation
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Figure 4. (A) Gene
expression changes
predicted by the ME-
Model to occur in the
Strictly Nutrient-Limited
(SNL) growth region
indicated in light blue
under glucose limitation in
minimal media are
analyzed. (B) ME-Model-
computed relative gene—
enzyme pair expression is
plotted as a function of
growth rate; the
normalized in

silico expression profiles
are clustered hierarchically.



Gene expression during

the Janusian region
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Figure 5. (A) Gene
expression changes
predicted by the ME-
Model to occur in the
Janusian growth region
indicated in purple under
glucose limitation in
minimal media are
analyzed. (B) Simulated
expression profiles are
clustered using signed
power (B=25) correlation
similarity and average
agglomeration (C) Many of
the expression modules
correspond to genes of
central carbon energy
metabolism. Reactions are
colored according to the
module color in (B).



Conclusion

An integrated network of metabolic and gene expression pathways
is built for E. coli.

A growth model is developed by adding demands and constraints
on molecular catalysis.

Model yields accurate predictions of growth phenotypes from
molecules to whole cell:

1. the cell’s maximum growth rate (1*) in the specified environment
2. substrate uptake/by-product secretion rates at p*

3. metabolic fluxes at p*

4. gene product expression levels at p*

A few basic principles underlie growth rate optimization at the
systems level.

» The model predicts three distinct regions of microbial growth, defined
by the factors (nutrient and/or proteome) limiting growth.

» A growth rate-dependent Michaelis—Menten-type model for
polymerization speed

» Proteomic constraints improve predictions of metabolism itself

» Gene expression changes as the cell transitions through and between
the different growth regions



Take-Home Message

 Because ME-Models explicitly represent gene
expression, directly investigating omics data in
the context of the whole is now feasible

e ME-modelis more intricate then M-model, more
room for unknown/incomplete knowledge

— Lack of specific translation efficacy for each protein
— Lack of specific degradation rates for each mRNA

— lack of signaling

— Lack of regulatory circuitry

* A big challenge for Plant system
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