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TRP lon Channels

RP ion channels are members of family of non-selective
cation channels. TRP channels are believed to resemble
VGICs. However they share little in common with VGICs
with regards to pharmacological and biophysical properties.

[ No atomic structures have been available for any member
of TRP family.

[ Mammalian TRPV1 is heat-sensitive (thermo) ion channel
and the receptor for capsaicin (in chili pepper) that elicits
burning pain. It is also strongly activated by toxins. TRPV1
IS arguably the best-characterized member of the
vertebrate TRP family.

RPV1 (apo) at 3.4 A; TRPV1-ligands (3.8 A and 4.2 A).




3D Reconstruction of TRPV1 (apo) by
Single-Particle Cryo-EM

No motion correction Motion correction
CMOS camera Direct electron detect camera



3D Density Map and Model Construction
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General Architecture of TRPV1




TRPV1 Subunit
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Factors Contributing to High Resolution

A minimal functional rat TRPV1 construct (110 to 603 and
627 to 764), ~ 300 kDa for tetramer.

etergent exchange from DDM to Amphipols that
maintain the channels’ stability and solubility in water.

2 summit direct electron detector camera in super-
resolution counting mode that enables newly implemented
procedures of dose fractionation and motion correction to
eliminate motion-induced image blurring.

tate-of-the-art computer program that use statistical
methods to deal with sample heterogeneity.




Minimal Functional Construct
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Detergent (Amphipols)

The term amphipol (Apol) refers to “an amphipathic polymer that is able
to keep individual MPs soluble under the form of small complexes”.

Detergents may destabilize membrane proteins, possible because of
lossing physical constrain and competitons of detergents with protein-
protein and protein-lipid interaction.

There are many types of Amphipols: polyacrylate-based Apols (A8—
35),phosphorylcholine-based APols (PC-APols),lucose-based, nonionic
APols (NAPols), sulfonated APols (SAPols), etc. A8-35 is the first and the
most extensively studied APol to date.

They self-assemble into well-defined particles comprising a few
macromolecules, four molecules, on average, for 9- to 10-kDa A8-35,
three for 25-kDa NAPols.

The amount of APols required for efficient trapping is an important
parameter that must be established early in any study. The ratio depends
on the protein of interest and can be determined by carrying out quick
trapping tests using a concentration range of APols, dilution below the
CMC of the detergent, and ultracentrifugation.

Annu. Rev. Biophys. 40, 379408 (2011)



Detergent (Amphipols)

Reducing inactivation by the detergent and
preserving membrane protein native
structure in detergent-free solution.
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K2 Camera (Gatan)

[The K2 camera has a fixed internal frame rate of 400 frames per
second and the ability to find the centroid of the electron peak to
subpixel accuracy (super-resolution mode).

[t minimizes noise of the detector, thereby dramatically improving the
DQE.
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Cryo-EM of TRPV1 using CMOS Camera
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Motion Correction with Dose-
Fractionated Imaging

Broken the total exposure into a stack of subframes and then mitigated image
blurring by aligning all subframes within one exposure.
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Each image was fractionated into a stack of 24 subframes, each of which was
accumulated for 0.2s. Total specimen dose is ~ 35 electrons per A2 Nature Methods 10, 584 (2013)



Motion-induced Image Blurring on Resolution
of the 3D Reconstruction of 20S
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Motion Correction Improves the Quality
of TRPV1 Images
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Each image was fractionated into a stack of 30 subframes, each of which was
accumulated for 0.2s. Total specimen dose is ~ 41 electrons per A2



Imaging Processing

Negative Stain and RCT 3D reconstruction in FREALIGN to provide initial model

Step (Cryo)

CMOS camera

K2 Camera

MRA-based semiautomatic particle picking and
manual rejection

70585 (300)

97116 (946)

Reference-free 2D classification 45625 88915
3D classification in RELION (heterogeneity) 10357 35645
3D refinement in RELION (all subframes) 8.8 A 3.6 A
3D refinement in RELION (subframe 3-16) 3.4 A

RELION: REgularized Llkelihood OptimizatioN

J. Struct. Biol. 180, 519-530 (2012)
J. Mol. Biol. 415, 406-418 (2012)
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