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Why I Think You Should Know About This Work

e “This pathway solved one of the most significant
limitations in biofuel production and biorefining:
losing one-third of carbon from carbohydrate raw
materials; this limitation was previously thought to
be insurmountable because of the way glycolysis
evolved.”

* This new synthetic pathway could be used with
many kinds of sugars, which in each case have
different numbers of carbon atoms per molecule,
and no carbon would be wasted.

* This new pathway could be used in biofuel
production using photosynthetic microbes



Why I am Interested in This Work

* The pathway has a potential to enable us to
use lignocellulosic materials more efficiently.



Glycolysis
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Hexokinase Enzyme

Glucose + 2 NAD* + 2 ADP + 2 P, - 2 Pyruvate + 2 NADH + 2 H* + 2 ATP + 2 H,0
2. Glycolysis occurs, with variations, in nearly all organisms, both aerobic and

anaerobic.
3. It occurs in the cytosol of the cell



Pyruvate Decarboxylation (aerobic)
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1. By PDC. Produce AcCoA, serving as a link to the TCA cycle. (In mitochondria for
eukaryotes or in cytoplasm and plasma membrane for prokaryotes)
2. AcCoA involves in isoprenoids, flavonoids, polyketides and fatty acids biosynthesis

3. AcCoA serves as the building blocks for biorefinery



Structure of oxidative (EMP) and non-oxidative glycolysis
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1a. Phosphoketolase (Fpk);
1b. Phosphoketolase (Xpk)



Carbon rearrangem?nt
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FBP dependent carbon rearrangement :
2. Transaldolase (Tal);
3. Transketolase (Tkt);
4. Ribose-5-phosphate isomerase (Rpi);

5. Ribulose-5-phosphate epimerase (Rpe);

6. Triose phosphate isomerase (Tpi);
7. FBP aldolase (Fba);
8. Fructose 1,6-bisphosphatase (Fbp)

SBP dependent carbon rearrangement:
9. SBP aldolase
10. sedoheptulose-1,7-biphosphotase




Three FBP-dependent NOG networks.
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Pentose and triose sugar phosphate NOG networks
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Figure S3. NOG with Pentose and Triose Sugar Phosphates. NOG can take any sugar as input
molecules, as long as it can be converted to sugar phosphates that are present in the carbon
rearrangement network. The pathways using RSP (A) and G3P (B) are shown. These pathways
use F/Xpk dual activity, though similar pathways can be drawn using Fpk only or Xpk only.
Carbon rearrangement can convert any sugar phosphate (triose to sedoheptulose) to
stoichiometric amounts of F6P. Here the conversion of a ribose and triose are illustrated.
Abbreviations and enzyme numbers are defined in Figure 1 legend.



In vitro NOG-expression of NOG enzymes(FBP dependent)
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Figure S4: SDS-PAGE of HIS-tagged NOG proteins. SDS-PAGE denaturing gels of purified
Rpe, Rpi, Tkt, Tal, F/Xpk, Ack, and Fbp. Sizes corresponded within theoretical values. These
proteins were design with N-terminal polyhistidine tags and crude extracts were purified using a
one-step affinity chromatography procedure.



In vitro NOG-expression of NOG enzyme activity assay
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* Gpd, glycerol-3-phosphate dehydrogenase; Pfk, phosphofructokinase; Glk,

hexokinase; Zwf, glucose-6-phosphate dehydrogenase; Pgi, phosphoglucose



AcP (mM)

In vitro NOG-total activity
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a, In vitro conversion of F6P to AcP using eight purified core enzymes, including F/Xpk, Fbp, Fba, Tkt, Tal, Rpi, Rpe and Tpi. The starting
F6P concentration was 10 mM. The red triangles are reactions with all eight enzymes present. The blue squares are reactions with all
enzymes except Tal. b, In vitro conversion of F6P to acetate, determined by HPLC. The addition of Ack and Pfk allowed the complete
conversion of AcP to acetate. Acetate was monitored at 210 nm (A 210 nm ). ¢, Conversion of three sugar phosphates—F6P, R5P and
G3P—to near stoichiometric amounts of AcP. 10 mM of each substrate was converted to AcP using the same core enzymes (denoted

‘all’), whereas ‘no Tkt’ controls produced much less. In vitro enzyme assays were independently performed in triplicates and error bars
indicatestandard deviation (s.d.).



In vivo conversion of xylose to acetate using NOG
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Figure 4 In vivo conversion of xylose to acetate using NOG.

a, Pathways in E. coli strains (JCL16, JCL166, JCL118) with NOG for converting
xylose to acetate and other competing products (lactate, ethanol, succinate and
formate production). Plasmid pIB4 was transformed into these strains for the
expression of F/Xpk (from B. adolescentis) and Fbp (from E. coli) under the
control of the P,/acO, promoter.

b, The expression of Fbp and F/Xpk in JCL118/pIB4 was tested by purifying the
crude extract on a His-tag column, and then running a coupled colorimetric assay
to test AcP formation. The control was JCL118 (without plasmid), which did not
produce AcP.

¢, Xylose was converted to acetate and other products under anaerobic
conditions. Strain JCL118 (AldhAAadhEAfrdBCApfIB) produced a near theoretical
ratio of acetate/xylose. In vivo production data were independently repeated
three separate times from frozen glycerol stocks. Error bars indicate s.d.
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Conclusion

NOG
* Glucose — 3HAc + 2ATP, no reducing equivalent, not present
in nature

* Re-routing glycolysis to NOG in E.coli requires
a. PEP independent PTS-glucose transport system
b. deleting the lower part of EMP pathway
c. adapting E.coli to new central metabolism system
d. providing alternative source of reducing power

* When NOG coupled with CBB pathway, it requires less ATP
and less Rubisco turnover for each AcCoA produced compared
with CBB-EMP pathway (improved efficiency). This could be
important if an autotrophic organism was used for the

biosynthesis of AcCoA derived products, such as 1-BuOH or
fatty acids

* Fundamentally important for carbon management


http://www.youtube.com/watch?v=r49WyCQYYt0�

Thank you
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