In January 1997, monitoring wells immediately south of BNL’s High Flux Beam Reactor (HFBR) showed tritium in the groundwater at concentrations above the state and federal drinking water standard. BNL subsequently determined that tributary water was leaking at a rate of six to nine gallons a day from the spent-fuel pool located in the basement of the HFBR building.

The contamination from this leak is confined to the laboratory property, and both the U.S. Environmental Protection Agency and Suffolk County have stated that the contamination poses no danger to people on-site or to the public.

Nonetheless, remediation of the leak has been swift: In May, groundwater pumping was begun as an interim action to prevent further spread of the contamination above the drinking water standard. Between May and September, BNL removed all spent-fuel elements from the spent-fuel pool and shipped them offsite, in preparation for pumping water out of the pool.

Pumping began on December 18. This action, which Congress has explicitly authorized and funded, will eliminate the primary source of tritium.

Over a period of about two weeks, approximately 65,000 gallons of water is being pumped from the spent-fuel pool and transferred via a double-walled underground pressure-distributary to underground storage tanks at the Lab site. Suffolk County Department of Health Services has inspected the piping and the tanks, as well as a leak-detection system for the tanks and transfer piping. In addition, the tanks were successfully pressure-tested and certified by Underwriters Laboratory.

The tritium leak prompted many groups to take more in-depth looks at the HFBR, as well as management and culture at the Lab. Results of these investigations — one of which is described in another by the U.S. Department of Energy’s (DOE) Basic Energy Sciences Advisory Committee and one by BNL itself — were recently released and are summarized below.

GAO Investigates Tritium Leak

In a report gathered at the request of the House Science Committee, the U.S. General Accounting Office (GAO) concluded that DOE — from the on-site Brookhaven Group through to DOE’s Washington headquarters — shares responsibility with Brookhaven’s managers for their tritium leak.

As the GAO’s report, issued November 12, 1997, observed: “Our concern is that role and responsibility weaknesses raised by DOE and summarized in this report reflect fundamental problems that have long characterized the Department’s administration of all its national laboratories, not just BNL. [D]espite many calls for improvement by internal and external groups, DOE has not been able to develop an effective structure that can hold its laboratory contractors accountable for meeting all important departmental goals and objectives.”

“This report indicates that the failure to discover the tritium leak in a timely manner was due, in part, to systemic and management problems at DOE,” noted House Science Committee Chairman F. James Sensenbrenner Jr., who, with his committee’s ranking minority member, — he had announced, at a party held to celebrate his new Ph.D., that he — he had announced, at a party held to celebrate his new Ph.D., that he — he had announced, at a party held to celebrate his new Ph.D., that he — he had announced, at a party held to celebrate his new Ph.D., that he — he had announced, at a party held to celebrate his new Ph.D., that he — he had announced, at a party held to celebrate his new Ph.D., that he.

BESAC Supports HFBR Restart

In a November 22 letter to Martha Krebs, Director of DOE’s Office of Energy Research, Basic Energy Sciences Advisory Committee (BESAC) Chair John Stringer reported BESAC’s recommendations in response to Krebs’s charge on June 23 relating to the current shutdown of the HFBR.

The reactor was shut down on June 4 while the tritium leak from the spent-fuel pool was discovered and now remains shut down pending the outcome of an environmental impact statement (EIS) and a decision by Energy Secretary Federico Peña, which is anticipated in early 1999.

Looking at the HFBR’s role in neutron research in the U.S., BESAC concluded: “We believe that HFBR is unique...or a significant world-leading technique...accommodation by other facilities is not really possible: the quality of the results would not be acceptable.”

Thus, BESAC recommended that:

• The HFBR be restarted as soon as possible, to minimize the effect on neutron science research in the U.S. As Stringer wrote, “It should restart at a power of several megawatts” in a timely manner. All the actions required for this move to 60 MW should be completed before startup: if the startup were to be at 30 MW with a clear plan to move to 60 MW, it should not be done.

The objective is to restore the operation to a level at which it had operated at before, and which the advice presented to us showed was acceptable from all points of view” he continued. “The effect will be to increase the supply of neutrons to researchers, without requiring unreasonable delays and expenditure at this time.”

• The path to restart should be as expeditious as possible, to aim at a start in 1999.

• DOE should proceed as soon as possible with a full EIS because, wrote...

Lab Finishes Facilities Review

In mid-December, BNL released a report on the second phase of the Lab’s comprehensive site-wide facilities review begun last April as part of an ongoing initiative to identify potential environmental concerns and improve environmental management.

The report, the first phase of which was released in September, encompassed those buildings thought to have the greatest potential to impact the environment. All other current and former buildings were included in the second phase.

The report on the second phase of the review, compiled after in-depth examination of records and interviews with past and present employees, indicates that further groundwater monitoring and possible remedial action may be needed at 14 of the 560 current and former facilities surveyed.

To reduce any potential risk to the environment, BNL initiated corrective actions during the course of the review for nine of the 14 areas.

These actions included installation of additional groundwater monitoring wells, and sampling and remediation of tanks and their contents. BNL began to address the remaining findings before the end of the year.

One finding indicated the potential for environmental contamination from past disposal practices at the site of the former medical research complex, which was in use by the U.S. Army when the site was Camp Upton during both World Wars, then by the Laboratory until 1958. A preliminary review of existing groundwater monitoring data in the area and of past aerial and ground surveys for radioactive soil contamination shows no evidence of indication of contamination. Additional groundwater monitoring has begun, and remediation will be performed if necessary.

Other findings relate to areas where vehicle maintenance was performed on or off the greenhouses. At St.-John’s field, a greenhouse on site that is used in biological research, a tank formerly used to store carbon tetrachloride for a solar-neutrino experiment, several dry wells and a septic tank.

The review was conducted by staff from BNL and DOE’s Brookhaven Group, with participation and technical assistance from other DOE facilities and Suffolk County Department of Health Services.
Get a Load of This Great Gift!

Since last holiday season, if you’ve been on site with a 70-ton weight or a crane and you need to lift something that needs to be lifted, you can now have that assistance! The STAR refurbishment is near completion, and you can expect that BNL will be adding a new crane to the BNL fleet.

A new crane will be arrived in January, which will be larger than the present crane. It will be used for a variety of tasks, including the lifting of heavy equipment, such as the PHENIX detector that was shipped in from Russia.

The crane will be the heaviest weight designed so far, and it will be used in a number of applications, such as the construction of the HFBR, or the High Flux Beam Reactor. It will be used for a variety of tasks, including the lifting of heavy equipment, such as the PHENIX detector that was shipped in from Russia.

The crane will be the heaviest weight designed so far, and it will be used in a number of applications, including the construction of the HFBR, or the High Flux Beam Reactor. It will be used for a variety of tasks, including the lifting of heavy equipment, such as the PHENIX detector that was shipped in from Russia.

The crane will be the heaviest weight designed so far, and it will be used in a number of applications, including the construction of the HFBR, or the High Flux Beam Reactor. It will be used for a variety of tasks, including the lifting of heavy equipment, such as the PHENIX detector that was shipped in from Russia.

The crane will be the heaviest weight designed so far, and it will be used in a number of applications, including the construction of the HFBR, or the High Flux Beam Reactor. It will be used for a variety of tasks, including the lifting of heavy equipment, such as the PHENIX detector that was shipped in from Russia.

The crane will be the heaviest weight designed so far, and it will be used in a number of applications, including the construction of the HFBR, or the High Flux Beam Reactor. It will be used for a variety of tasks, including the lifting of heavy equipment, such as the PHENIX detector that was shipped in from Russia.

The crane will be the heaviest weight designed so far, and it will be used in a number of applications, including the construction of the HFBR, or the High Flux Beam Reactor. It will be used for a variety of tasks, including the lifting of heavy equipment, such as the PHENIX detector that was shipped in from Russia.

The crane will be the heaviest weight designed so far, and it will be used in a number of applications, including the construction of the HFBR, or the High Flux Beam Reactor. It will be used for a variety of tasks, including the lifting of heavy equipment, such as the PHENIX detector that was shipped in from Russia.

The crane will be the heaviest weight designed so far, and it will be used in a number of applications, including the construction of the HFBR, or the High Flux Beam Reactor. It will be used for a variety of tasks, including the lifting of heavy equipment, such as the PHENIX detector that was shipped in from Russia.

The crane will be the heaviest weight designed so far, and it will be used in a number of applications, including the construction of the HFBR, or the High Flux Beam Reactor. It will be used for a variety of tasks, including the lifting of heavy equipment, such as the PHENIX detector that was shipped in from Russia.

The crane will be the heaviest weight designed so far, and it will be used in a number of applications, including the construction of the HFBR, or the High Flux Beam Reactor. It will be used for a variety of tasks, including the lifting of heavy equipment, such as the PHENIX detector that was shipped in from Russia.

The crane will be the heaviest weight designed so far, and it will be used in a number of applications, including the construction of the HFBR, or the High Flux Beam Reactor. It will be used for a variety of tasks, including the lifting of heavy equipment, such as the PHENIX detector that was shipped in from Russia.
VIPS of BNL's 50th Year Honored

There were 195 Very Important Persons (VIPS) invited to the 1997 Service Award Reception held in the Brookhaven Center on the evening of December 11. The VIPS included: one employee — Bernard Manowitz — who marked his fiftieth year of service during the past calendar year (see picture caption below), one who realized 45 years at BNL in 1997, eight who observed 40-year anniversaries, 43 who completed 35 years at the Lab, 32 who were at BNL for 30 years and 37 who had served 25 years as BNL employees.

Other VIPS included: 60 employees with between 36 to 39 years of service, 11 who have been with the Lab between 41 and 44 years, two — Elinor Norton and Alfred Wolf — who have logged 46 years at Brookhaven and two — Irving Fegenbaum and Seymour Rankowitz — who have been BNLers for 48 years.

In emphasizing the vital role played by BNL’s VIPS, Interim Director Peter Bond recalled BNL’s “spectacular list of scientific achievements over the [50] years.” But, he added, “For any institution that has survived that long, there are years, goods, years and not-so-good years,” this year, despite some wondrous accomplishments, most people would classify as not-so-good.

“It requires long-term dedicated employees,” he concluded, “to keep the Lab on track through the down years to make sure great years will follow. We look forward to a new beginning in 1998 under Brookhaven Science Associates.”

— VIP Photos by J. deRubinstein

Double 50th: BNL and Manowitz Share Golden Anniversary Year

BNL was 50 this year, and one employee — Bernard Manowitz, Department of Applied Science (DAS) — shared the Lab’s half-century in a special way by completing his own 50 years of service at BNL this October. Manowitz joined Brookhaven as an associate engineer on October 1, 1947, rose to serve as DAS Chairman 1979-1989, then returned to active research as a chemical engineer. As part of BNL’s 50th Anniversary celebrations, he conceived, organized and hosted three Reminiscence Seminars (see caption on page 1), served as Grand Marshal for the Anniversary Picnic and, on August 1, became a one-day Mayor of Upton Town to receive mail from the U.S. Upton Post Office, which was celebrating its opening on site exactly 50 years earlier. On November 5, Manowitz’s unique scientific and administrative contributions were recognized in a special program and reception organized in his honor by 50th Anniversary Activity Coordinator Renee Flack and attended by many colleagues and friends. Here, Manowitz and his wife Adele enjoy a piece of his anniversary cake.

— Liz Seubert

Service Awards

The following employees celebrated service anniversaries during the months of August, November and December 1997.

August

35 Years

Anthony F. Locatelli — Medical
Victoria L. McLane — Advanced Tech.

30 Years

Hans F. Abendroth — Physics
Charles A. Nisdon — NSLS
Edwin Taylor — Comp. & Com.

25 Years

Alexander F. Pendzick — AGS
Daniel A. Visconti — Physics
Charles F. Vogel — Central Shops
David O. Welch — Applied Science

20 Years

John J. Hauser — RHIC
Marilyn J. Johnson — Phys.
Harriett K. King — Distributed
Elizabeth A. McBrein — Phys.
Lousia Morrow — SEP
John Nagy — Applied Science
Richard R. Savoy — Central Shops
Peter J. Schneitzbaum — AGS
Gene A. Sorenson — Central Shops
Peter DeToll — NSLS

10 Years

Patrice Benjamin — AGS
Robert J. Chmiel — NSLS
Robert L. Colichio — SEP
Patricia M. Cortes — Plant Eng.
John P. Cooper — RHIC
Robert DeAngelis — Plant Eng.
Anne DeGrand — Dir. Office
J. Ioann Giambalvo — Safeguards & Sec.
Donald J. Haeg — Plant Eng.
Gary Herbst — RHC
Troy R. Mayo — Plant Eng.
Franklin Smell — Plant Eng.
John Walsh — Central Shops

November

35 Years

Richard W. Allen — Plant Eng.
Jack Fajer — App. Science
Donald R. Meaney — AGS
William B. Sampson — RHIC

30 Years

25 Years

Carol A. Creutz — Chemistry
Rae Greenberg — Director’s Office
Samuel P. Yamin — Director’s Office

20 Years

Gerry M. Bunce — AGS
Mark Cohen — Central Shops
Thomas J. DeSimo — Safeguards & Sec.
Kelley H. Griffin — Safety & Prot.
Sonja B. Haber — Adv. Technology
David R. Jakobson — Human Res.
Renee Flack — Central Shops

10 Years

Rosanie M. Alongi — Admin. Support
Karen F. Fiovarante — Safety & Env. Prot.
Joseph B. Gaddis — Plant Eng.
James Gilsin — Plant Eng.
Luke S. Greco — Safeguards & Sec.
Gregory F. Hall — Advanced Technology
Douglas G. Harder — Plant Eng.
Deborah A. J. Johnson — Admin.
Mabelle L. Latanzola — Plant Eng.
Susan L. Lovell — Plant Eng.
Thomas M. Nolan — RHIC
Philip J. Pietraski — NSLS
Donald A. Pinelli — Instrumentation
Danna R. Rubino — Financial Serv.
Craig R. Sirota — Plant Eng.
Brendal T. Thomas — Financial Serv.

December

40 Years

Tage G. Carstoiu — Plant Eng.
Leonard Newman — App. Science

35 Years

William C. Crockett — Biology
J. Dennis Klein — NSLS
Bernard L. Stepnoski — AGS

30 Years

Ronald W. Weider — AGS

25 Years

I. Hung Chiang — AGS
Thomas F. Koeble — Chemistry

20 Years

Benjamin J. Azzara — RHIC
Roseann Callister — Contracts & Proc.
Dimitrios Kokinos — Adv. Technology
Keith D. Detmer — Plant Eng.
Jonathan C. Hanson — Chemistry
Marie H. Hobson — App. Science
James F. Osterlund — RHIC
Michael J. Paquette — Plant Eng.
Eugene T. Ponzio — App. Science
Wayne H. Rambo — NSLS
Robert M. Ritter — AGS
Elizabeth H. Seubert — Director’s Office
John B. Warren — Instrumentation

10 Years

Barrett T. Clay — AGS
Frank J. Cullen — RHIC
Paul Geiger — Director’s Office
Ganga P. Ghimray — Plant Eng.
John J. Lechmanski — Plant Eng.
Antonia M. Rodriguez — Plant Eng.

9 Years

J. Dennis Klein — AGS

5 Years

J. Dennis Klein — AGS

3 Years

J. Dennis Klein — AGS

2 Years

J. Dennis Klein — AGS

1 Year

J. Dennis Klein — AGS

The Brookhaven Bulletin is printed on recycled paper with 10 percent post-consumer materials, with 50 percent recycled content. For the best print quality, please view online. This report has been prepared for the employees of BROOKHAVEN NATIONAL LABORATORY by ANITA COHEN, Editor and MARSHA BELFORD, Assistant Editor. Published weekly by the Public Affairs Office for the employees of the Laboratory. Published with the approval of the Associate Director for Science. Copyright © 1997 Brookhaven National Laboratory. For more information about this issue, visit our Web site at http://www.bnl.gov/bulletin/. This issue can also be found at http://www.bnl.gov/bulletin/bb980102e.html.
Placement Notices

The Lab's placement policy is to select the best-qualified candidate for an available position. Candidates are considered in the following order: (1) present employees within the department/division and/or appropriate bargaining unit, with preference for those within the immediate work group; (2) present employees within the Laboratory; and (3) outside applicants. In keeping with the Affirmative Action Plan, selections are made without regard to age, race, color, religion, national origin, sex, disability or veteran status.

Each week, the Human Resources Division lists new placement notices, first, so employees may request consideration for themselves, and, second, for open recruitment. Because of the priority policy stated above, each listing does not necessarily represent an opportunity for all people.

Except when operational needs require otherwise, positions will be open for one week after publication. For more information, contact the Employment Manager, Ext. 2082, or call the Employment Office, Ext. 7744/344-7744, for a complete list of all job openings; use a TDD system to access job information by calling 516-344-6510; or access current job openings on the World Wide Web at http://www.bnl.gov/JOBS/jobs.html.

SCIENTIFIC RECRUITMENT - Doctorate usually required. Candidates may apply directly to the department representative named.

POSTDOCTORAL RESEARCH ASSOCIATES/JUNIOR SCIENTISTS - Positions are expected to be available, beginning September 1, 1998, in the Nuclear Theory Group, which has active programs in the theory of heavy-ion collisions at ultrarelativistic energies and in the structure of nuclear physics. Contact: Robert Pisarski, Physics Department.

SCIENTIST - Trained in experimental nuclear or high energy physics, to join the PHENIX Project. Will provide expertise in and coordination of the technical computing effort for data analysis and simulation. Will also participate in the operation and research program of PHENIX. Must have a Ph.D., several years of experience in research, and significant experience in modern computing software and methods. Experience in supervising teams of scientists, students and software engineers is preferred. Contact: Samuel Aronson, Physics Department.

OPEN RECRUITMENT - Opportunities for Laboratory employees and outside candidates.

DD 5091. REGISTERED NURSE POSITION - (term appointment) Requires experience in phlebotomy, monitoring EKGs, blood pressure and pulse, ordering supplies, laboratory work and record keeping, experience in brain Imaging and a BS/BA degree in nursing is desirable. Will participate in imaging studies with radioactive tracers, act as a patient advocate and assist in primate studies. Must be highly organized to work rapidly and accurately within a restricted time frame. Flexibility in work hours is also required. (reposting) Medical Department.

Classified Advertisements