Physics of Bunched Beam Stochastic Cooling
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History

Herr and Mohl reported cooling bunched beams in ICE (1978)
Chattopadhyay develops bunched beam cooling theory (1983)
0 -w,t =@(t)=asinfw (a)+y,]
Stochastic cooling considered for SPS, RHIC and Tevatron (80s).
Unexpected RF activity pollutes Schottky signal (85s).
Transverse signal suppression seen in Tevatron (1995).
Cooling of long bunches in FNAL recycler (2005).
Proton cooling experiment in RHIC (2006). Pasquinelli, PAC95 (3 more?)
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Operational cooling of gold in RHIC (2007). = s o e
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Figure 11: Measurement of signal suppression. Top, signal
heating; Middle, open loop; Bottom, Signal Suppression.
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before kicker

Basic idea
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Signal Suppression

current at pickup due to voltage at kicker
1,(®) = B@)Vi(@) o ¢N
total current at pickup
Ip=1 +Is, Is oc ¢V N

voltage at kicker due to current at pickup

Vk = —IpZr
= —(l1+1Is)Zr
—BViZpr — Is7r

net voltage at kicker due to Schottky current

_ —IsZp
14+ BZp

VK = —ZDIS
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Ip 1s suppressed by the
same factor.

Optimal cooling gain for
BZ, =1
Mixing...
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RHIC RF

Rebucketing can
lead to sharp
edges in phase

space density

1
f\/l — x” cos(kx)dx
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Lots of high

frequency signal
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Coherent components are THE technical

challenge to bunched beam S.C.

*We know that in RHIC for ions the bunch shape has
Fourier strength at 8 GHz
w Jl

*The low frequency spectrum reflects the bunch 2
filling pattern, abort gap, missing bunches, etc. “
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*The high frequency spectrum looks the same
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*All bunches contribute coherently

Bunch signal spectrum at 10 MHz

*Are locked to rf

*The bunch shape arises from the dual harmonic rf
buckets and the “rebucketing” gymnastic, h=360/2520
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Proton coherence is different. PRSTAB 7, 044402 (2004)
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kicker cavity _

RHIC required a new kicker concept

o(E)
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Mixing reduces optimal voliage by a factor of Sorso
*ﬂ""r*."w)!w\,‘ ‘w‘l' '4? w\,‘ l*\b.' ”1 J\, wl‘l ‘“‘1 4‘, \*\"| " M *w"“‘}\ ‘“‘\) ﬂ"" "‘w ! ‘“\w ’“M(i‘ "1% *J“’LM‘1%\‘L1Av[L"MV“\W‘L}W"M}Avrl'lw

cavity voltage, total voltage and beam

e A A A A A A A A

0 50 100 150 200
time (ns)

- BROOKHFVEN
e Blaskiewicz C-AD NATIONAL LABORATORY

8



Longitudinal kicker needs to open during the ramp

Tolerance for closing 1s 0.002”
Individual cavities driven by 40 Watt amplifiers
(250 W each for 6, 1k-Ohm kickers with 1 GHz bandwidth)

Amplitude and delay are corrected every 5 minutes.
BROOKHEVEN
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The actuality 1s complicated.

Stochastic Cooling Low Level Block Diagram
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RHIC Results

Evolution of a 5 hour RHIC
store with 1.E9 Au/bunch.

Top, wall current monitor
profiles taken one hour apart
without cooling. IBS causes
significant loss from the RF
bucket.

Bottom, cooling on. Beam loss
1s consistent with burn off in
the interaction regions.
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Simulation Preliminaries 1

Tracking a billion macro-particles for a billion turns 1s not possible.
A robust scaling law accurate over many orders of magnitude is required.

Model intra-beam scattering (IBS) with random kicks drawn from the
appropriate distribution. The central limit theorem applies, so the
scaling is straightforward.

For stochastic cooling (SC) it 1s well know that the cooling time scales in
proportion to the number of particles.

Define a macro-particle so that the simulated and real beams have the same
parameters in the continuum limit. Both could be injected into the same
ring and have the same bunch length and rms beam size.

Therefore:

1) Define a real beam and a simulation time for it.

2) Choose the number of macro-particles.

3) Define the number of simulation turns based on SC.

4)  Adjust the size of the IBS kicks to coincide with this number of
simulation turns.

BROOKHFEAVEN
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Simulation Preliminaries 11

For example, Consider 1.E9 Au ions over 1.E9 turns.
Take 1.E5 macro-particles. Each particle has 1.E4 Au ion charges.
For SC this implies a simulation time of 1.E5 turns.

The rms IBS kick per turn, in angle and dp/p, 1s calculated
for the actual beam and multiplied by 100 = \/ 10°/10°

This degree of scaling requires as much confidence as possible.

Numerical self consistency 1s checked.

Analytic work based on Fokker-Planck and other statistical methods are known.
Another way of looking at the problem 1s next.
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Economical view of the scaling with N

. 202 & .
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Mixing and signal shielding are fully accounted for.

oo
R(wk) = 70 f(wk)  X(wi) = /
—00
: 14+gR—1gX
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Figure 4: Comparison of actual values of Re(\) versus
gain with those obtained from equation (14) with X = 0
for a rectangular frequency distribution with N = 51. The
numerical solution had one eigenmode with a monotoni-
cally growing eigenvalue, which is not fully shown.
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Figure 5: Evolution of A as a function of gain for the ex-
act, numerical solution and equation (14). The oscillator
frequencies were uniformly spaced with w; = j/N and

N =51.
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Derbenev’s picture of intra-beam scattering
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Bunched Beam Simulations I

Dealing with intra-beam scattering 1 d o2
1) Start with Piwinski’s formulas S —— = Qo
using average lattice parms. Op dt

3) Correct for coupling (more later) *10 = (awO + O‘yO)/ 2

4) C01jrect for number of macro- Qp1 = Rapo
particles

5) Correct for non-gaussian profile F(t) — ] (t)()' 2 ﬁ /Q

6) Langevin kick Ap = Op \/ozpl T()F(t)x
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Comparison with Betacool, courtesy A. Fedotov

lattice comparison
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Simulations without cooling look good

Data
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Figure 1: Evolution of the average bunch profile over a five
hour RHIC store with gold beam and no cooling. Initial

conditions are shown on the left and each trace to the right
1s one hour later.
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Simulation
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Figure 3: Simulation of the average bunch profile over a
five hour RHIC store with gold beam and no cooling. Initial
conditions are shown on the left and each trace to the right
1s one hour later.
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Cooling in the time domain

Time domain model of filter cooling.
Very similar to coherent stability
problem.

energy error and

Grid macroparticles on a fine lattice

Nm
Io(ti,m) = 35 3 8(rh(n) — ta)
m=1

A
Use cascaded 1 turn delays 10 b ﬂ i

]l(tkan) =]O(tk9n)
_210 (tkan_l)
+IO(tk9n_2) 10 F -

8.3 GHz vs. 5.9 for 1 turn delay ! ! !
-2 0 2

relative arrival time (ns)

pickup voltages
o

Convolve with wake using FFTs
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Data .vs. Simulation

Gain calibration in
-90

the simulation
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Figure 3: Measured and simulated signal suppression at 6
GHz. The data are the top two traces and the simulation the
bottom 2.
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Simulation is good, burn-off is a few percent.

Data
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Figure 2: Evolution of the average bunch profile over a
five hour RHIC store with gold beam and good longitudinal

cooling. Initial conditions are shown on the left and each
trace to the right 1s one hour later.
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Figure 6: Simulation of the average bunch profile over a
five hour RHIC store with gold beam and good cooling.
Initial conditions are shown on the left and each trace to
the right 1s one hour later.
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Transverse Cooling system

Similar cavities. Low level requires a notch filter (R&D)

40 Watt amplifiers are sufficient.

5-8 GHz keeps aperture reasonable.
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T

: : : Ton
Transverse Cooling Simulations Hs(e,7) = 262—]3062 - / dtqVy 5 (1)

Check of scaling, single harmonic rf, no IBS or longitudinal cooling

scaled betatron cooling rates for 10° ions (no ibs)

3 I‘Ilp:8k T T T T T | | T
25 | np=31k -
np=126k

5 L np=2011k i B

15 F -

J, cooling rate (hour'1)

o 4 o'l I I 1
0 01 02 03 04 05 06 07 08 09 1

Hs/Hmax

Figure 5: Transverse cooling rate versus the value of the

longitudinal hamiltonian. Similar results are shown 1n [6,
7]
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Intra-beam scattering helps cooling

IBS causes diffusion in longitudinal action. Physically important
for FNAL Recycler, 1t’s a major source of mixing.

For RHIC, longitudinal cooling keeps the distribution in the
bucket, but a given particle will wander in synchrotron
amplitude.

The net effect 1s that all particles have good transverse cooling.

This gives a new simulation time scale to worry about.

One must make sure that the fast mixing from IBS is small
compared to the fast mixing from synchrotron motion.
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RHIC parameters OK with 50k macroparticles (add transverse
picture).

5k

500k

4
3_ -
2

current (amps)

0 5 10 15 20 25 30 35
time ((ns)

Figure 8: Test of convergence with both cooling and
IBS. The mitial profiles for 5000, 50,000, and 500, 000
macroparticles are shown in the upper traces. The lower
traces show the profiles at 2000, 20,000, and 200, 000
turns, respectively. This corresponds to 10° gold ions
evolving over 8 minutes.
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Coupling allows for one system to cool both transverse planes
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Vertical cooling only (next fall in yellow)

beam current (A)

2/3rd turn delay,dQ,;,=0.01, no 56 MHz, 5-8 GHz
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2/3rd turn delay,dQ

min

=0.01, no 56 MHz, 5-8 GHz
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Identical systems in both rings
2/3rd turn delay,dQ,,,;,=0.01, no 56 MHz, 5-8 GHz

Be+27 I I T I I I | I
sloppy,full
sloppy,60cm o
5e+27 e clean,full _
clean,60cm ©
“o 4e+27
=
L
> 3e+27
K7
(@)
£
£ 2e+27
=
1e+27 -
0 1 ] | 1 | | | | ]

0 05 1 15 2 25 3 35 4 45 5

time (hours)
BROOKHEVEN

Mike Blaskiewicz C-AD NATIONAL LABORATORY 31



Higher beam intensity and clean rebucketing

vertical cooling only, no 56 MHz, 5-8 GHz
1.2e+28 I I I

| | | | | |
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Conclusions

For ion beams in RHIC

1) Longitudinal stochastic cooling worked.

2) Lifetime was improved.

3) Simulations show reasonable agreement with data.
4) Transverse cooling looks straightforward.

5) Expect a big payoff from transverse cooling.
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