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abstract

• SPINK is a spin tracking code for polarized spin 1/2 particles. The
code tracks both trajectories in 3D and spin.

• It works using MAD or other tracking codes for orbits and thin
element kicks based on the BMT equation to track spin.

• The code typically runs on a Linux platform, either sequentially or
MPI-parallel.
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Purpose

• Develop a code that tracks orbit and spin through the lattice of a
real accelerator with all its bells and whistles

• A code fast enough to track millions to billions of turn of a syn-
chrotron or storage ring in a manageable run time

• A code that is flexible enough to control and to hack if necessary
for special purposes

• A code based on some widely used descriptors of a machine lattice
(in our case it is MAD), but that can accept other descriptors if
necessary or useful
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Basics

• SPINK tracks 6 phase space coordinates for the orbit and 3 coor-
dinate representing the Cartesian components of the unitary spin
vector

• Orbit tracking is done by propagating the vector ~r through ray
transfer maps. These maps are for “thick” elements (say, MAD),
or “thin” elements, (say, TEAPOT)

• Spin tracking is done via “thin” elements spin rotation matrices

• SPINK can track several particle sequentially, or “trivially” in paral-
lel using the MPI (Message Passing Interface) library, and averages
the final results

• NOTE that in the cases we treat (RHIC etc.) the spin motion
depends on the orbits, but the motion of the particles is not affected
by the magnetic moment associated with the spin. i.e. Stern-
Gerlach forces are negligible
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Units and Definitions

• SPINK uses MKSA units. Canonical orbital phase space variables
are

r =
(
x, x′ =

px

p
, y, y′ =

py

p
, ∆φ = −c∆t,

∆E

pc

)
• Vector spin is treated as a 3-dimension real vector

S = (Sx, Sy, Sz)

• SPINK has provision for tensor polarization
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Conventions

• We follow the Frénet-Serret accelerator coordinate convention with
x̂ radial, ŷ vertical, and ẑ longitudinal (in the spin literature the
vertical is often ẑ)

• Input and output of transverse phase space are in [m] and [mrad]
for transverse coordinates, (x, x′), radial and (y, y′), vertical.

• The longitudinal coordinate ∆φ = c∆t is in [m], and the canonical
“energy” coordinate ∆E is in [GeV]. ∆φ and ∆E are evaluated with
respect to the phase φs and energy Es of a reference synchronous
particle
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Dynamic Lattice

• The accelerator lattice used by SPINK can be static, i.e. read
once from the lattice builder (say, MAD) and never changed, or
dynamic i.e. continuously modified in the course of machine run.
Two methods are implemented in the code to dynamically modify
the lattice using tables

• (a) Reading from a table a list of descriptors for different lattices.
In the first case, once a given energy is reached during acceleration
the track initializer routine will read the next lattice

• (b) Reading tables of parameters of all quadrupoles, etc. and
update the transport maps accordingly
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Thomas-BMT Equation

• Spin propagation is calculated from the Thomas-BMT equation{
dS

dt
=

q

γm
S× F

F = (1 +Gγ)B⊥ + (1 +G)B‖

using the magnetic field components transverse and longitudinal
to the velocity of the particle. G is the gyromagnetic ratio of the
particle

• To provide spin kicks in thin elements, the BMT must be “flat-
tened”. This means that for spin tracking, instead of integrating
the equation through a magnetic element of the machine, SPINK
expresses the spin rotation in each machine element in matrix form

S =M S0.

where M is a 3× 3 matrix
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Coordinate Transform (1)

• Use a coordinate system e that revolves around the accelerator

• The longitudinal axis ẑ is tangent to the reference orbit, x̂ and ŷ are
the radial and vertical position respect to this orbit, respectively

• Call s the longitudinal coordinate along the orbit

• In e the derivative of a vector a is

da

ds
=
dax

ds
x̂+ ax

dx̂

ds
+
day

ds
ŷ + ay

dŷ

ds
+
daz

ds
ẑ + az

dẑ

ds

• Use the local radius of curvature ρ of the reference orbit

dx̂

ds
= 0,

dŷ

ds
= −

ẑ

ρ
,

dẑ

ds
=
ŷ

ρ
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Coordinate Transform (2)

• Transform the vector velocity v to the system e

• Transform the time derivative d/dt to space derivative along the
ref. orbit d/ds

• Express the magnetic field components in the Thomas-BMT equa-
tion as

B⊥ = B× u, B‖ = (B · u)u, B = B⊥ + B‖

with u = v/|v|

• Introduce in the BMT a vector

f =
q

γm
F =

(
1

ds/dt

) |v|
Bρ

[(1 +Gγ)B−G(γ − 1)(B · u)u]
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Flat BMT

• Moving from time to space, the vectorial BMT differential equation
is equivalent to 3 scalar diff.eqs.{

S′x = fzSy − (fy − 1
ρ
)Sz

S′y = fxSz − fzSx
S′z = (fy − 1

ρ
)Sx − fxSy

• The system yields three 3.rd order formally identical linear equa-
tions for the three components of the spin

S
′′′

+ ω2S = 0, with ω2 = f2
x + (fy −

1

ρ
)2 + f2

z .

• The general integral of each diff.eq. is

S = C1 + C2 cosµ+ C3 sinµ

with the angle of spin rotation

δµ = ω δs.

δs is the physical length of a (thin) machine element
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Evolution of the spin vector around the accelerator

• Let us follow the path of a particle through the magnetic field of
each element of the machine. This magnetic field is referred to
a coordinate system that rotates around the (circular) accelera-
tor, with x̂ radial, ŷ vertical, and ẑ tangent to a reference particle
trajectory

• The particle spin precesses on a cone around an axis directed along
the total magnetic field seen by the particle.

• This axis will be mostly vertical in a bending magnet, mostly
transversal to the trajectory in a quadrupole, mostly longitudinal
in a solenoid

• In every machine element there will be a radius of curvature of the
reference orbit that instantaneously moves on a plane perpendicular
to the local total magnetic field
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Spin Matrix

• The equation of spin motion can finally be expressed in natrix form.
The spin transfer unitary matrix M is

M =

(
1− (B2 + C2)c ABc+ Cs ACc− Bs
ABc− Cs 1− (A2 + C2)c BCc+As
ACc+ Bs BCc−As 1− (A2 + B2)c

)

• with {
c = 1− cos δµ
s = sin δµ , A = 1

ω
fx, B = 1

ω
(fy − 1

ρ
), C = 1

ω
fz

• It is det(M) = 1

• NOTE thatM represents a parametric linear transformation, whose
elements are function of the values of the particle coordinates
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Angles

• It is useful to look at M in another way: as a rotation of the spin
vector by an angle δµ around an axis whose direction is defined
through two angles, θ, latitude and φ, longitude

axis of spin rotation θ

φ

x

y

z

• So, M is completely defined by three angles δµ, θ, φ
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Spin Tune

• Spin tune is defined as the number of spin complete revolutions
per turn in an accelerator

• The spin tune is calculated from the eigenvalues of the one-turn
spin matrix, obtained by multiplication of all the matrices visited
by a particle in one turn

νs =
1

2π
arccos

(
Tr(M)− 1

2

)
with Tr(M) the trace of the spin matrix

• More exactly, the spin-one-turn matrix is such only when the par-
ticle reaches the same starting point in phase-space after several
turns
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Spin Matrix in Specific Devices

• Considering specific devices in SPINK is, in principle, not neces-
sary, because it would suffice to consider the coefficients of field
expansion at each location along the accelerators

• However, it may be convenient in practice

• Types of accelerator devices and insertions recognized by the code
are:
DRIFT, BEND, MULTIPOLE, SOLENOID, EDGE, SIBERIAN SNAKE,
SPIN ROTATOR, SPIN FLIPPER, RF DIPOLE and SOLENOID,
HELIX, KICKER ..etc.

• In the following we show simple examples of schematic devices,
with matrix and spin kick and spin matrix to lowest order in the
orbital quantities x, x′, y, ...
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Horizontal Bend Dipole

• According to the BMT equation the spin rotation must be propor-
tional to (1+Gγ) in an element, as a bend dipole, with a magnetic
field transverse to the beam, B⊥

• However, in a system of coordinates that revolves around a circular
accelerator, by expansion in power of x, x′, y, y′, obtain to lowest
order

δµ ≈ fy −
1

ρ
≈

1 +Gγ

ρ
−

1

ρ
=
Gγ

ρ
the “1” disappears and the spin rotation is simply Gγθ, with θ the
bend angle.

• To lowest order, the spin matrix for a bend is(
cos δµ 0 sin δµ

0 1 0
− sin δµ 0 cos δµ

)
, a rotation around the vertical ŷ
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Quadrupole

• Also in a quadrupole the field is normal to the beam, so we expect
the spin rotation angle to remain proportional to (1 +Gγ)

• By expansion in powers of x, x′, y, y′ obtain

δµ ≈ f ≈
1 +Gγ

ρ
−

√
x2 + y2

ρQ

The bend of the trajectory is contained in a plane that continuously
changes from quad to quad

• The ”1” can become smaller or larger than One, but on the average
remains One, while the particle moves from a quad to the next in
the lattice

• In a pure quadrupole the axis angles are

−
π

2
< θ <

π

2
, φ = ±

π

2
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Horizontal Field RF Dipole

• In a RF dipole with horizontal oscillating field, B⊥, we expect that
the spin angle kick should be proportional to (1 +Gγ)

• Here it is

δµ ≈ fx ≈
1 +Gγ

ρ
−

y

ρD

• The horizontal oscillating field also modulates the vertical betatron
oscillation y with interesting consequences

• To lowest order, the spin matrix for RFDH is(
1 0 0
0 cos δµ sin δµ
0 − sin δµ cos δµ

)
, a rotation around the radial x̂
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Solenoid

• In a pure solenoid, the field in the BMT equation is B‖, parallel to
the beam

• SPINK makes the spin rotation proportional to (1+G), independent
of the beam energy, as it should

• To lowest order, the spin matrix for a solenoid is(
cos δµ sin δµ 0
− sin δµ cos δµ 0

0 0 1

)
, a rotation around ẑ

• In the solenoid fringe field, with longitudinal and transverse fields,
the story is more complicated
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Siberian Snakes and Spin Rotators

• Siberian snakes and Rotators rotate the spin by a given angle
around a given axis

• Snakes break the condition of periodic spin kicks that produces
spin resonances and polarization losses

• SPINK models snakes and rotators in three ways:
(1) Synthetic, (2) Table driven, (3) Analytic

1. Synthetics are optically unit thin elements, ”markers”, where the
angles of spin rotation δµ and axis θ, φ are given

2. Table driven are optically represented by a 6× 6 matrix and by the
three spin rotation angles dynamically read in a Table

3. Analytics are represented by analytic expressions for orbit and spin
matrices
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SPINK Flow

1. Run MAD to generate the lattice descriptor. MAD generates out-
put files containing twiss parameters, transport matrices and errors

2. A pre-processor reads these files and generates a complete lattice
descriptor

3. If a different orbit transport code is used, other than MAD, espe-
cially for non linear particle tracking, the transport maps or field
coefficients are read in another way from MAD output

4. At the present we are implementing an UAL-TEAPOT orbit tracker
for SPINK
(see Fanglei Lin and Nikolay Malitrsky work for the EDM project)

5. Use the GUI to build an input configuration file and run SPINK.
These operations are conveniently done through a Unix script
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SPINK Flowchart
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GUI

• SPINK is launched through a motif-window GUI.

• The GUI is a convenient interface to set values for the variables in
the program.

• A Menu window appears, that prompts to edit the configuration
file, and leads to further windows for all modules of SPINK

• On each of the module editing windows there are help buttons ?
explaining the meaning of each variable, string or Boolean param-
eter
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3 out of the many GUI Windows

Main Dyna[mics] Pop[ulation]
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Example 1 - RHIC2003 - Broken Snake

60 80 100 120 140 160 180
−1

0

1

60 80 100 120 140 160 180
−1

0

1

030611−001

RHIC Yellow @CLOCK6 (full + part snake) COD=5mm

h=5

h=1

h=2

h=3

h=4

h=6

h=7

h=8

h=9

h=10
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Example 2 - AGS - No Snakes

0 10 20 30 40 50

Gγ

−1

−0.5

0

0.5

1

S
y

AUL 0412276−01

Gγ=8.743

15.256���

17.421

18.560

20.760

24.038

27.734

29.438

32.699

34.899

39.246

42.568

44.777
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Exampke 3 - AGS - Hint of Horizontal Resonance

4 5 6 7 8 9 10 11 12

−1

−0.5

0

0.5

1

AGS − one snake, µ=30

Q=8.62:8.96, ε=20:0, δγ/turn=5.10
−5

, matched

AUL 050104−05
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Example 4 - J-PARC - Main Ring - No Snakes

60 62 64 66 68 70 72 74 76 78 80

Gγ

−1

0

1

AUL 051123−spinNS

40 42 44 46 48 50 52 54 56 58 60

20 22 24 26 28 30 32 34 36 38 40

6 8 10 12 14 16 18 20
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Example 5 - J-PARC - Main Ring with Partial Snakes

60 62 64 66 68 70 72 74 76 78 80

Gγ

−1

0

1

AUL 051124−04

40 42 44 46 48 50 52 54 56 58 60

20 22 24 26 28 30 32 34 36 38 40

6 8 10 12 14 16 18 20

J−PARC MR − 2 snakes, µ=54:54−>45:45

Q=22.12:20.92, ε=1π mm−mr
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Example 6 - AGS - Tune Jump

4.4 4.6 4.8 5 5.2 5.4
4.6e−06

4.8e−06

5e−06

5.2e−06

5.4e−06

ε
Y

4.4 4.6 4.8 5 5.2 5.4
0.992

0.994

0.996

0.998

1

Nick Table − one turn Tune Jump

2.1 T snake matrices interpolated

ε
X

AUL 29SEP08−01

S
Y
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Example 7 - COSY - Deuterons, RF Solenoid spin flip

0 2e+06 4e+06 6e+06 8e+06

0.85

0.9

0.95

1
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Example 8 - COSY - Deuterons, RF Dipole - Spin Flip
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Example 9 - RHIC - Distorted COD
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Example 10 - RHIC - Snake Resonance

40 80 120 160 200

Gγ

−1

−0.8

−0.6

−0.4

υ
x
=0.2153, υ

y
=0.2379

−1

−0.8

−0.6

−0.4

υ
x
=0.2147, υ

y
=0.2385

−1

−0.8

−0.6

−0.4

υ
x
=0.2129, υ

y
=0.2402
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Notes

• SPINK has been around for several years. We extensively use it
in Brookhaven for polarized proton studies at the AGS and RHIC.
The code has been exported and used in other laboratories, notably
Jülich in Germany and KEK-JPARC in Japan.

• For circular accelerators other codes address some of the same
issues such as
DEPOL by E.Courant, SNAKE by J. Buon, SPRINT by M.Vogt,
MAD by Ch.Iselin, F.Schmidt et al, ASPIRIN by Y.Shatunov and
V.Ptitsyn, COSY-infinity by M.Berz and G.C.Onderwater, PTC by
E.Forest
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Conclusions

• SPINK works very well in its limits and approximations

• It is in continuous development

• The code if available to everyone in the community

• There is also a User’s Manual
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