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Ion-electron interactions

• Electron cooling is a method to increase a phase space density of a 
hot (ion / pbar) beam by merging it with a cold electron beam. 

• Cooling is caused by interactions of individual ions with individual
electrons. 

• Individual ions with collective electrons incoherent beam-beam 
(weak – strong  beam-beam).

• Ion beam with electron beam two-beam instability (coherent 
beam-beam, strong-strong)

Any of the 3 channels may be damaging for ions. 



3

Channel 1:  More Cooled Less Stable

• The more beam is cooled the less stable it is. 

– Landau damping → 0 

– Beam stability parameter:  

• Instabilities can be driven by:
– Machine impedance;
– Stochastic cooling system;
– Damper;
– Structure resonance of the tune-depressed envelope modes; 
– Interaction with residual ions and/or e-clouds; 
– Collective interaction with e-beam.

• For RR w/o damper, the stability limit D=0.7-0.8. 
• With damper: D=1.5 (old kicker, measured)
• New kicker:    D =4 (expected)  
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Channel 2: weak-strong beam-beam, etc.

• Individual ions with collective electrons: lifetime may degrade due to: 

– Nonlinear resonances excited by (static) e- space charge (DR);

– Dipole e- oscillations (noise) at betatron sidebands;

– Oscillations (noise) of e- current at               sidebands (PR)bω2
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Channel 3: two-beam instability 

• Actually, the talk is beginning from here…

Two-Beam Instability in Electron Cooling
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Some history

• Ion-electron instabilities,  IEI were observed (or suspected) at 
several e-coolers (CELSIUS, IUCF, COSY, HIMAC, RR). 

• A general idea was introduced by V. Parkhomchuk in ~1992. He 
posed a problem about this phenomenon.

• Transverse impedance of e-beam was calculated by myself in 
1997 for                      :   the impedance seemed too small for typical 
cases.  
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History, cont.

• In e-drift approximation, the problem was simultaneously treated by 
myself (1999) and P. Zenkevich & A. Bolshakov (1999) 

– AB: The growth rate is proportional to a coupling parameter     : 

– Z&B: “For realistic parameters, the instability is impossible in our 
model”. 

Their model was essentially the same as mine.

• In 2000, V. Parkhomchuk & V. Reva applied the same ideas for an 
uncoupled revolution matrix with identical X and Y blocks and got  

• All the 3 papers were in contradiction with each other, and every of 
them seemed to be arithmetically correct…
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Incompressible e-beam

Actually, the theory of IEI starts from this slide…

The continuity equation

plus the drift equation

leads to

Thus, the drifting e-beam behaves as an incompressible liquid !
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Drift Response
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Incompressible e-beam, consequences

• From here, 2 important consequences follow:

• The dipole ion-electron motion does not depend on the ions 
emittance as soon as the ions are mainly inside the e-beam; thus, 

• The quadrupole ion-electron growth rate relates to the dipole rate in 
the same way as for the conventional impedance:
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Dipole motion in the cooler

Rotation symmetry in the cooler allows to use                   : 

with ;
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In practice, all the 3 phases (ie, iL, ed)   are small, 1<<≡ klψ

So, a perturbation approach is proper.
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Perturbed Solenoid Matrix

The interaction parameter:

Entire solenoid matrix:

diagonal part:

coupling part:

Note:  own / alien ~ small phases .

rotation invariance  
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Normalized Perturbation

The entire revolution: 

normalized perturbation:
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Step Aside:      Perturbation Theory for 4D Optics

To get eigen-values for the perturbed revolution matrix, the perturbation 
formalism has to be developed for 4D optics. 

In Lebedev-Bogacz 4D presentation, the 4 unperturbed eigenvectors are:
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Perturbation Theory, cont.

These basis vectors are orthogonal through the symplectic unit matrix   U :
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The perturbation theory is constructed very similar to the Quantum Mechanics.

The complex phase shifts:

The growth rates:

Result :   as in QM, the tune shift is given by the diagonal matResult :   as in QM, the tune shift is given by the diagonal matrix element. rix element. 

Useful relation:
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Ion-Electron Growth Rates 

The entire revolution: 

normalized perturbation:

The diagonal part is always relatively small,  001.001.0~1.0~/ ,cd −iLedψPP

Neglecting the small diagonal part, the growth rate follows:

coupling parameter: 
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Uncoupled Rates: Small

Without coupling, only the small diagonal part works, giving the growth rate:
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Why the coupling is important?

• Electrons drift in a direction, orthogonal to the ions offset. Thus, for 
planar (uncoupled) modes, the force, acting back on the ions, is
orthogonal to the ions velocity. The resulted work is zero, and thus 
the rate is zero too (at the lowest order over the small phases).

• From formal point of view, for the planar modes, the diagonal matrix 
elements of the drift perturbation are zero (at lowest order).

• What’s wrong is with Z&B (1999) conclusion (“instability is 
impossible”) ? 

• What’s wrong is with the P&R (PR2000) result ?  

)4/( 00 lTαβ=ΛPR2000: 
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Contradictions…

• Z&B based their conclusion on the determinant of the perturbation 
matrix only. But the main contribution to the rate goes from the alien 
part, which does not reveal itself in the determinant analysis. 

• In 2001, P. Zenkevich abandoned his previous conclusion, and re-
derived the PR2000 result  

)4/( 00 lTαβ=Λ

for a no-coupling revolution matrix

This result seems contradicting my conclusion about coupling, 
but none of them shows any mistake…
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Contradiction Untangled

• Where the key is:
– The unperturbed matrix of PR2000 is DEGENERATED .

– For degenerated states, the perturbation formulae have to be used in a 
specific way (remember Quantum Mechanics!). 

– Any combination of the orthogonal degenerated states is an eigen-state 
as well. There are infinite possibilities for the eigenvectors, and every 
one of them gives its own result for the growth rate. 

• The recipe (from the QM, again): 
– Correct eigen-vectors are those which make the perturbation diagonal.
– Those are the circular modes (100% coupled ! ) 

Substituted in my perturbation formula, they immediately give the PR result! 
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PR2000: correct and misleading altogether

• So, even without the machine coupling, there is an area around the 
coupling resonance, where even a small ion-electron interaction 
makes the optics 100% coupled. 

• However, for practical cases, the width of this area is extremely 
small, E-4 – E-5, so practically the width is zero. Without machine 
coupling, the growth rate is zero everywhere, apart of that separate 
punctured point. 

• PR2000 result follows from mathematically correct calculations for 
that punctured point. It was not realized, however, that even a tiny 
step out of that special point would suppress the rate by orders of 
magnitude if there is no machine coupling. 
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Z01

• A problem about rate dependence on the tune separation was 
formulated by P. Zenkevich in 2001 (Z01). 

• He treated numerically the eigen-value problem for the following 
form of the revolution matrix:   

where            is an inverse half-drift matrix, C is the perturbed solenoid matrix, and2/1−D

intended to represent uncoupled machine revolution matrix. 
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Growth Rate as a Resonance Curve

For ACR (RIKEN) numbers, he calculated the following dependence 
of the growth rate on the tune separation:
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The maximal peak value here is in exact agreement with PR2000. 

What factor does determine the width? – this problem were not raised in Z01.
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Width of the Resonance

Careful look at Z01 revolution matrix reveals that it DOES include a machine 
coupling, since it contains an uncompensated solenoid  C :

So, it has to be that 
the width is determined by the ion Larmor phase advance. 

Taking the numbers, it looks pretty consistent with the figure above.

Working a bit more, the following formula can be checked to be an exact 
description of the Fig. Z01:   
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Z01 - Uncoupled

If the solenoid is compensated, the revolution matrix is written as:

Numerical eigen-value calculation for the same parameters as Z01, but with this
compensated coupling, reduces the width ~ 300 times! See Fig. below.
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Can it really develop?

For the RR “old working point”, the coupling was about maximal. Calculation with
M. Xiao – A. Valishev OptiM file gives the coupling factor               .

For 300E10 antiprotons at 50% of the circumference, and 0.5 A electron beam, 
The growth time is calculated as

For “mining” states, this time could be ~ 10 times faster.  

3.0=xyκ
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Could it be damped by

• Landau damping?

• Resistive impedance?

• Active damper?
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Dipole Mode Damping

The Landau damping:
is vanishing for                  

If the chromaticity sign is correct,                the ring impedance 
causes damping for these modes (they are called “fast”). 
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For RR, at this 100 MHz frequency, and the same 300E10 pbars, 
the resistive impedance gives rise to  0.1 sec. of the growth / damping time. 

If the dipole IEI is not damped by Landau + Impedance, it has to (and can) 
be damped by a feedback damper.  

What about the quadrupole IEI ?
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Quadrupole IEI

• The quadrupole ion-electron growth rate relates to the dipole rate in 
the same way as for the conventional impedance:

• Similar to the dipole mode, the Landau damping does vanishes at 

• The resistive damping for these quadrupole fast modes is reduced
much more, than the IEI rate. Thus, it might easily be insufficient to 
damp the quadrupole IEI motion.

• There are no such thing as a quadrupole damper (yet, at least).

• With                                ,  the fast-modes quadrupole IEI has all the 
reasons to develop, if the coupling is significant.
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Quadrupole IEI: emittance growth, lifetime degradation 

• If the coupling is significant, the quadrupole IEI easily develops.

• At some level, it is stopped by its own non-linearity, and stays 
forever. 

• Due to vanished Landau-damping, transfer of this coherent motion 
into incoherent motion strongly suppressed. 

• This suppressed energy transfer still goes, and gives slow emittance 
growth and lifetime degradation.

• To fix this problem, step a bit away from the coupling resonance, or / 
and reduce the coupling area.   
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RR experience 

• Recycler (RR) used to stay at the coupling resonance, ~0.42 for the 
both tunes, having ~100% coupling. 

• There was emittance growth, strongly correlated with the electron 
current and the pbar linear density.

• At “mining” state (max bunching), and 100 mA of e-beam, the typical 
rate was  ~ 30 pi mm mrad/hr, or ~0.001 of the calculated 
quadrupole IEI rate for these parameters.

• The described theory pushed me to insist on more separation of the 
tunes. 

• For the new WP, the coupling parameter reduced ~10-20 times .

• The emittance growth reduced ~ by the same factor !



31

Transverse emittance after mining for two operating points
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Tunes A:       25.414, 24.418 (max coupling). 
Tunes B:        25.451, 24.468. (suppressed coupling)
Pbars ~330 E10, the bunch length 6.1 ms, ~75 eV s, e- current 100 mA. 
Stochastic cooling OFF. 
Spikes are artifacts.

Growth rates dropped 10-20 times (consistent with this theory)!
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