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RHIC performance for Au ions - 2004 run 4
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1. Goals for RHIC-II 5

Present performance of the RHIC collider with heavy ions is limited by
the process of Intra-Beam Scattering (IBS) within the ion beam.

To achieve required luminosities for the future upgrade of the RHIC
complex (known as RHIC-II) an Electron Cooling system is proposed.

* The baseline of the heavy-ion program for RHIC is operation with Au
ions at total energy per beam of 100 GeV/n. For such an operation, the
electron cooling should compensate emittance growth due to IBS.

* For RHIC operation with the protons, the electron cooling should assist
in obtaining slightly low transverse and longitudinal emittances.
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2. Intra-beam scattering (IBS) in RHIC 6

Since, the main reason for electron coolini is to compensate emittance
growth due to IBS, it was necessary to make sure that the models which
we are using in simulations agree with the measurements.

In addition to previous measurements of IBS growth rates in RHIC (W.
Fischer et al., EPAC02) dedicated studies of IBS were done:

1. with Au ions in 2004.
2. with Cu ions in 2005.

Also, several theoretical models of IBS were implemented and
benchmarked within the BETACOOL code.
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IBS in RHIC - measurements vs theory
Example of 2005 data with Cu ions. !

Simulations — Martini’s model of IBS for exact designed lattice
of RHIC, including derivatives of the lattice functions.
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IBS in RHIC summary 8

1. Measurements with Au ions in 2004 gave very good agreement
with IBS theory for the longitudinal growth rates but some
disagreement for the transverse growth rate.

2. Our subsequent studies led to the conclusion that the
disagreement observed is most likely due to the uncertainties in
the 2004 measurements.

3. Measurements were improved for the 2005 studies.

4. The latest 2005 data for the Cu ions showed very good agreement
with the IBS theory both for the longitudinal and transverse
growth rates.
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Non-magnetized cooling approach for RHIC o

Difference of electron cooling for RHIC and other projects -

different goals.

1. Typical goal in a low-energy cooler - is to achieve very low emittances
and momentum spread. This can be done with Magnetized cooling -
since transverse temperature of electrons is suppressed, it allows to cool
to very low temperatures determined by longitudinal velocity spread of
electron beam.

2. For RHIC (as FNAL) the goal is mainly to prevent emittance and
momentum spread from growing - no need to cool it by orders of
magnitude.
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3. Non-magnetized friction force 10

For finite anisotropy of electron distribution we calculate friction force
numerically in BETACOOL rather than using asymptotic analytic

expressions.
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Zero magnetic field B=0, anisotropic velocity

distribution of electrons in PRF (error bars: 3*sigma) H
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Non-magnetized cooling and recombination 12

One potential problem of Non-Magnetized approach is recombination because
now we have very small electron transverse temperatures of the order of

-
0.5-1 eV. B
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This can be controlled by helical undulator which introduces coherent
azimuthal angle:

0 = eBA which can produce required T
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Longitudinal force component at ion velocity of 3e5 m/s - without
and with the wiggler (B=10G, A=8, 16, 24 cm). Curves - numeric
evaluation of 3D integrals for the friction force, dots - VORPAL %
results (Tech-X, Colorado))
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Transverse force component at ion velocity of 3e5 m/s - without and
with the wiggler (B=10G, A=8, 16, 24 cm). Curves - numeric
evaluation of 3D integrals for the friction force, dots - VORPAL  **
results (Tech-X, Colorado))
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Non-magnetized force - summary 15

For anisotropic velocity distribution:

1. Accurate numerical integration for the friction force was
implemented in BETACOOL.

2. VORPAL results are in good agreement (10%) with numerical
integrals.

3. Reduction in the friction force values due to wiggler field
(VORPAL) was found as expected based on reduced values of the
Coulomb Logarithm.

Remaining part

- study effect of errors - will be presented by Tech-X Group.
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4. Experimental benchmarking: using Recycler (FNAL)
E-cooling

First Non-magnetized cooling was successfully demonstrated:

FNAL - July 2005.

FNAL e-cooling :
1. Allows to benchmark accuracy of the models for the friction force

2. Allows to study evolution of ion distribution under cooling or during
drag rate measurements - requires accurate description of both cooling
and diffusion in modeling

3. Allows to study effects of electron cooling together with stochastic
cooling (both transverse and longitudinal)
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11/26/05 Longitudinal momentum distributions after
2kV jump of electron energy (Lionel Prost, FNAL

17
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Simulation of the voltage jump method within the
BETACOOL 18
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BETACOOL- using numerical friction force -
dependence on transverse angles (velocities) of electrons’
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Cooling rate - based on equilibrium with diffusion 20
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Benchmarking of distribution evolution (500 mA, 2 keV

HYV step)
o FNAL
o 05
S o Measurement
5 10/31/05
= 0,3
202 L. Prost

o
H

o

A
S\ e

2 T I=2meV, T_t=0.9eV, dV/dr = 9e8 sec”-1
Energy, MeV
BETACOOL ¢
Simulation E
12/03/05 Bl
A. SIdOI’In ' i Energy,MeV2 i ‘
ROOKHAWEN Alexei Fedotov, May 24, 2006 @




Experimental benchmarking summary 22

* Simulation both for drag rate directly and equilibrium with diffusion are
within good agreement with measurement - for details see presentations

by FNAL group.

More experimental data and simulations may be needed to study various
questions:

accurate description of electron angles; measurement of velocity gradient
within the beam; accurate measurements of equilibrium properties;
measurement of current dependence; understanding emittance growth;

etc.
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5. Recombination estimate 23

Experimental measurement of recombination coefficient o, for
fully stripped ion (ESR, GSI, 2001) is in good agreement with
theoretical models for relative energies > 20 meV.
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Parameters of undulator for recombination suppression s

Teff [eV]

Magnetic field [G] 10
Period [cm] 8
Introduced effective temperature 30

[hours]

Recombination lifetime with Teff 166

Alexei Fedotov, May 24, 2006

G C




Cooling and recombination

. 25
(for present baseline parameters of the cooler)
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6. Parameters of the cooler

(for cooling of Au ions at 100 GeV/n)

26

Electron kinetic energy [MeV] 54.3
Electron charge per bunch [nC] 5
Electron cooler length [m] 80
Rms emittance normalized 4
[mm-mrad]
Electron rms momentum spread 0.0003
Rms radius of electron beam [mm)] 4.3
Electron rms bunch length [mm] 10
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Performance for Au ions

(for present baseline parameters, q=5nC, *=50cm) o
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Further possible increase in average luminosity for Au
ions (with charge increase in the electron bunch up to 25

10nC, and B* decrease to 30cm)
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Control of ion rms bunch length with longitudinal
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Protons at 250GeV (for RHIC-II parameters).

. . . 30
Cooling with present baseline parameters.
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Summary 31

1. Benchmarking between measurements of IBS in RHIC and
models - good agreement.

2. Benchmarking with direct simulations using VORPAL with and
without wigglers were performed - good agreement.

3. Benchmarking with experimental data for non-magnetized
cooling started - good agreement.

4. Detailed study of the cooling process and optimization of cooling
parameters is in progress.

Based on performed studies, non-magnetized cooling approach
for RHIC-II looks feasible.
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