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Section 1.     introduction  
 
In 1998, a substantial shorter beam life time was observed as soon as the E-Cooler was 
turned on in Celsius and this phenomenon has been called ‘electron heating’. Similar 
phenomena have also been observed by other facilities such as NAP-M, Fermi lab, 
Indiana, TARN II and COSY. Although a nonlinear electric field is regarded as an 
important reason for the fast beam loss in Celsius due to the fact that the electron beams 
has a smaller radius than the ion beam, the coherent ion-electron beam interaction may 
also play a role.  For RHIC e-cooler, since the electron beam and the ion beam have 
essentially the same beam size, the nonlinear electric field effects are greatly reduced and 
the coherent ion-electron interaction could be important for the ion beam stability.  
V.V.Parkhamchuk and V.B.Reva developed a dipole oscillation model to estimate the 
growth rate due to transversal coherent oscillation induced by electron beam 1, 2. It is also 
shown that this coherent effect could be amplified in the presence of the ion clouds 
ionized from the residue gas3.  This model is reviewed and applied to the RHIC electron 
cooling parameters. In section 2, the longitudinal two stream coupling is studied and the 
instability threshold is shown for the designed RHIC parameters. In section 3, the 
transverse two stream coupling equation is solved and the growth rate of the transverse 
coherent oscillation is estimated for the magnetized electron cooling scheme.  The effects 
of the ion clouds in the cooling section have been taken into account and the dependence 
of the growth rate on the neutralization factor is derived.  The stability analysis of the ion 
clouds motion inside the cooling section has also been made in order to estimate the 
neutralization ratio. It is shown that, in the presence of a strong longitudinal magnetic 
field, the ion clouds may not be removed by simply making a gap due to the Larmor 
oscillation resonance. The calculation for non-magnetized electron cooling design is 
given in subsection 3.4 and it shows that the designed electron density is three orders of 
magnitude smaller than the transverse instability threshold.                                          

                                                                        

 



Section 2.  Longitudinal-Longitudinal Coupling 
 
2.1Langmuir oscillation equations of motion 
In the presence of the electron beam, the longitudinal electrostatic oscillations (Langmuir 
oscillations) can be excited and amplified from turn to turn, leading to an ion beam 
instability. As shown in Fig.1, the electron and ion displacement from their equilibrium 
position make the local longitudinal boundaries carry opposite surface charge 
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Fig.1.The coherent displacement of all ions/electrons within a local region of the ion beam, Si, makes the 
charge density inside the region different from the equilibrium and thus induces local electrostatic field, 
which in turn act back on the perturbing particles and make them oscillate around the equilibrium position. 

  

where iZ is the ion charge number. Assuming the volume charge density variation due to 
the displacement within the considered region is negligible, the electrostatic field due to 
the displacement is  
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The negative sign comes from the fact that the positive longitudinal displacement of 
positive charge particles introduces positive surface charge to the right boundary and thus 
creates a negative electrostatic field. The factor of 2 comes from the fact that both 
boundaries contribute the same amount of surface charge with opposite sign. The 
equations of longitudinal motion for an electron/ion within the considered region are thus, 
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Since inside the considered region, the longitudinal position of each particle is the sum of 
its equilibrium position and the longitudinal displacement, i.e.  
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and since the unperturbed equilibrium position for each particle is independent of time, 
the equation of motion for the displacements have been obtained as following, 
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where the plasma frequencies are defined as1  
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2.2 Transfer matrix for Langmuir oscillation in cooling section. 
Given the initial condition, the equation (2.4) and (2.5) can be solved and thus the 
displacements at the back end of the cooling section can be obtained.  Since the electron 
beam is much colder than the ion beam and will be renewed for each turn, the initial 
condition for the electron beam can be set to  

0)0,( =zse                                                                                                                   (2.6) 

0)0,( =zs
dt
d

e                                                                                                                (2.7) 

where 0=t corresponds to front end of the cooling section. 

 Equation (2.1) can be rewritten as, 

                                                 
1All the numbers are given for the commoving frame densities 31110697.7 −×= mni

 and 31610117.7 −×= mne
, which correspond 

to RHIC magnetized cooling parameters.   
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By applying equation (2.4), (2.5) and (2.8), the differential equation for the longitudinal 
electric field can be derived as 
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Thus the longitudinal electric field due to the displacements of ions and electrons in the 
considered region turns out to be 
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At 0=t , by equating equation (2.8) and (2.10), one gets 
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By equation (2.3) and (2.10), the equation of motion for ion displacement can be 
rewritten to 
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Integrating equation (2.13) over t, the velocity of the particles’ longitudinal shift can be 
obtained, 
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cooll is the length of the cooling section. Then we can get the solution of the displacement, 

is  by integrating equation (2.14), 
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From equation (2.14) and (2.15), the transfer matrix for the ion displacement due to 
coherent Langmuir oscillation in the cooling section is 
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Thus for each turn passing through the cooling section, the ions’ local longitudinal 
displacements varies as  
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2.3 Determinant of the transfer matrix 
 

The determinant of the transfer matrix can be represented in terms of the plasma 
frequencies as following, 
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where the relation 2222
ieeipepi ωωωω = is used in the derivation. If 1>langmuirM  , the electron 

beam will transfer energy to the ion oscillation and thus increase the local electrostatic 
oscillation and cause instability. From equation (2.17), the condition for 1>langmuirM  can 
be depicted as follows, 
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Fig.2 Plot to show the sign of the 1−langmuirM . The red solid curve is for )cot()( xxxy =  and 

the blue dot line is for 1)( =xy . The plot shows the sign changes at π=x , i.e. πτω 20 = . 

 

Thus the threshold for the determinant of the transfer matrix to be bigger than 1 is 

πτω 20 =                                                                                                                    (2.19) 

The RHIC gold beam parameters in the cooling section are shown in Table 1 

 

nynx εε ,  15 π mm.mrad. 

yx ββ ,  60 meter 

iN        (Particles per bunch) 910  

il           (rms Bunch length) 0.37 meter 

γ          (Beam energy) 100 

xσ , yσ  (Ion beam size) 1.2 mm 

in          (Ion beam density in beam frame) 31110697.7 −× meter  

τ          (Cooling section flight time in beam frame ) 9102 −× s 
Table.1 RHIC gold ion beam parameters in the cooling section. For simplicity, a round beam 

approximation is used in the calculation. The emittance refers to 95% emittance. 
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                            Fig.3 )( langmuirMDet dependence of the electron beam density 

 

As shown in Fig.3, the longitudinal electrostatic oscillation puts an electron density 
limitation, 315

, 10102.3 −×= mn the  , which correspond to πτω 20 = , for the ion beam to be 
stable. For the current electron cooler design, the electron beam has the parameters 
shown in Table 2, 

 

eQ (Electron charge per bunch) 20 nC 

eN (Electron number per bunch) 111025.1 ×  

eσ (Electron rms beam size) m310225.1 −×  

Table.2 Electron beam parameters for the current electron cooler design. 

Thus, the density limitation corresponds to a bunch length limitation of the electron beam, 
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There are other limitations on the electron beam bunch length set by the requirement of 
optimizing the cooling force. For example if the electron bunch is shorter than 18 cm, 
Debye screening starts to reduce the cooling force. Since the electron beam bunch length 
is already 2 cm at the exit of the gun and stretchers have been designed to stretch the 
beam for higher cooling rate, this coherent longitudinal instability does not affect the 
current RHIC magnetized electron cooler design. 

 

 



2.4 Eigenvalues of the transfer matrix 
 

Although 1≤langmuirM  is necessary condition for the ion beam to be stable, it may not be 
sufficient. In order to make the oscillation stable, any linear combination of the velocity 
and displacement of the local electrostatic oscillation has to be bounded. In other words, 
the eigenvalues of the transfer matrix has to be smaller or equal to 1 as well. The two        
eigenvalues of the transfer matrix (2.16) can be calculated from the following equations, 
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For RHIC parameters, as we have seen above, 1<<ξ  and equation (2.20) can be 
rewritten to  
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which correspond to the following electron beam bunch length  
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Outside the cooling section, the ion beam Plasma oscillation will be described by the 
following equation, 
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Fig.4 Plots of the eigenvalues and the determinant of the transfer matrix. The x axis is the electron density 
in units of 3−m . The red solid curve is 1−+λ  and the blue dot curve is 1−langmuirM as already shown in the 

Fig.3. The maximal value of 1−+λ is around 0.01, which is much larger than the maximum of  
langmuirM , and 

the threshold happens at πτω =0
, i.e. 161075.7 ×=en . 

 

The corresponding transfer matrix is 
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is the flight time outside the electron cooling section and mCRHIC 845.3833=   is the 
circumference of RHIC. Thus the one turn transfer matrix for the longitudinal plasma 
oscillation is 

restLangmuirring MMM =                                                                                     (2.26) 

As shown in Fig.4.1, including the rest of the ring does not affect the determinant of the 
one turn transfer matrix but the maximal eigenvalue does change. As a result, the 
eigenvalue and the determinant set the same limitation to the electron beam density, 
which for the current magnetized electron cooler design is  
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The synchrotron tune of RHIC is 4107.3 −×  which is 5 times faster than the maximal 
growth rate, 5106.6 −× per turn. So the oscillation could be distorted by the synchrotron 
motion before it is actually built up.  
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Fig.4.1 Comparison of the determinant and eigenvalues of 
ringM and 

LangmuirM . The red solid line and the red dot line is 

the determinant and eigenvalue of 
LangmuirM  . The purple dash and blue dash-dot lines are the determinant and 

eigenvalue of 
ringM . The x axis is the beam frame electron density in units of 3−m . 

 

 

 

 

Section 3. Transverse-Transverse Coupling 
 
3.1 Transversal coupling for nonmagnetized cooling 
 

When the beam enters the cooling section and merges with the cooling electron beam, a 
misalignment perturbation of the two beams can cause their centroids to perform 
transversal oscillation as shown in Fig.5.  In order to obtain the equation of motion for the 
beam centroids, let’s consider the electrostatic field within the beams in the commoving 
frame. As mentioned in section 2, in commoving frame, the beams have the geometry as 
following, 

metermeterll eee 002.01810018.0' =>>=×== σγ                                            (3.1) 

metermeterll iii 0014.0301003.0' =>>=×== σγ                                             (3.2) 

As shown in Fig.5 (b), the coordinates relations among the beam centroids frame and the 
commoving frame is 
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where, 

 

      
                                                                (a) 

 
                                                                 (b) 
Fig.5 Illustration of Transversal Coupling in the cooling section. (a) The red dash curve represents for the ion beam and 
the blue dash-dot curve represents for the electron beam. The two circles represent the cross-section of the two beam 
and the solid spots are their centroids. (b) The cross sections of the beams shows the coordinates relations  , where 
similar with (a), the solid spots are the beam centroids and ie RR ,  are their coordinates. 

 

∫= dxdytzyxfrR eee ),,,(               (integrate over electron beam cross section)  (3.4)                                       

∫= dxdytzyxfrR eii ),,,(                (integrate over ion beam cross section)         (3.5) 

Equation (3.1) and (3.2) show that infinite long beam approximation could be used to 
calculate the transverse electric field. If the oscillation amplitude is smaller than the beam 
size, the electric field within the overlapping part of the two beams is       
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Thus in the rest frame, for an ion/electron sitting in position r and in time t, the 
transversal electrostatic force it sees is  
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And its equation of motion is 
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Assuming the beam distribution function changes slowly with time and by integrating 
equation (3.9) and (3.10) over the cross section according to the beam distribution, the 
centroids’ equations of motion can be obtained as following, 
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The transversal commoving frame plasma frequencies, eiiepepi ωωωω ,,,  are defined as . 
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Comparing with equation (2.4) and (2.5), the only difference is the coefficients of the    
second terms at the left hand side both for ion and electron beam. So the steps for solving 
(3.11) and (3.12) are similar with what has been done in section 2.2.  By setting the initial 
condition,  
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where 0ω is now defined as 
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Integrating equation (3.17) from the front side of the cooling section 0=t , one obtains 
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where ξ is now defined as 
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Thus the transfer matrix of two stream dipole type transversal interaction for the ion 
beam centroid is 
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which has exactly the same form of the transfer matrix due to the longitudinal Langmuir 
oscillation as shown in equation (2.16) except that the ξ  and 0ω  are defined differently 
from section 2.2. Thus for each turn passing through the cooling section, the transversal 
centroid motion is effected by the electron beam according to the following expression, 
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The calculation of transverseM  is the same as in equation (2.17) and (2.18)  
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As shown in Fig.61, since the oscillation frequency for the transverse oscillation , 0ω , is 5 
orders smaller than the longitudinal Langmuir oscillation, the instability threshold is 5 
orders larger than what the longitudinal oscillation has and thus is not likely to be a real 

                                                 
1 All the Figures in this subsection are given for the commoving  frame densities 312103.5 −×= mni

 and 315103.3 −×= mne
 . The more 

realistic calculation for non-magnetized electron cooling design with wiggler field will be given in subsetion 3.4. 



limitation for the electron cooler design. The eigenvalues of transverseM  is also the same as 
(2.20) with different definitions of ξ  and 0ω . 

( ) [ ])sin()1()sin(1)cos(1 0000 τωξξτωτωξτωξλ −−±−+=±                                  (3.25)       

Comparing with the longitudinal oscillation, the instability threshold of the electron beam 
density is pretty much the same for the eigenvalue restriction and the determinant 
restriction as shown in Fig.7. To implement transverseM into the ring, one need to do the 
Lorentz transformation at the entrance and inverse Lorentz transformation at the end of 
the cooling section since transverseM is derived in the commoving frame. Furthermore, to 
avoid double counting the phase advance inside the cooling section, one may add 
negative drift matrix to compensate. As a result, the transfer matrix in lab frame is given 
by 
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Fig. 6 The dependence of 1−transverseM  on the electron density en  shows a instability threshold 5 orders  
larger than the longitudinal Langmuir oscillation. 
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Fig. 7  Plot of 1−+λ and 1−transverseM for the transverse dipole type oscillation. The x axis is the 

electron density in units of 3−m . The red solid curve is 1−+λ and the blue dot curve is  1−transverseM . 
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As shown in Fig.8, the threshold of the instability decreases about one order of magnitude 
after including the cooling section into the ring. 
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Fig. 8 Plot of 1−tranlabλ and 1−tranlabM for the transverse dipole type oscillation. The x axis is the electron density in 

units of 3−m (in beam frame). The red solid curve is 1−tranlabM . The blue dot curve and the purple solid curve are the 

two eigenvalues of tranlabM ,i.e. 1−tranlabλ . The tune has been taken as 23.28=xν and the betatron function is 

taken as meterx 40=β  

 

3.2 Transversal Coupling in the presence of a solenoid 
For magnetized cooling, a solenoid with strong longitudinal magnetic field has to be 
included in the cooling section. For RHIC electron cooler, one option is to include a 30 
meter long TB 5// = solenoid to enhance the cooling force. The Larmor frequencies in the 
beam commoving frame for the ions and electrons are 

 
Transverse dipole oscillation in the cooling section with longitudinal magnetic field. The small blue circle crossed by 
the magnetic field line represents the electron Larmor oscillation orbit and the bigger circle going through it with an 
arrow represents the drift motion orbit. 
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Consequently, only the electrons are completely magnetized as the flight time is s910− .  
The equation of motion for each ion or electron is similar to (3.9) or (3.10) with an 
additional term coming from the magnetic force, i.e.  
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 where ŝ is the unit vector along the longitudinal direction. Integrating (3.28) and (3.29) 
over the electron and ion beam transverse distribution respectively, one gets 
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Define, 
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where X and Y are the transversal components of R. 

 Thus equation (3.30) and (3.31) can be rewritten as 
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Equation (3.50) and (3.52) describe the coupling of the ion beam centroid with the 
guiding center of the electron beam centroid. Taking the trial solutions as the following  
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and inserting them into (3.50) and (3.52) respectively, one gets 
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Thus the eigenfrequencies are1  
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Thus, the solution of (3.50) and (3.52) should be the linear combination of three modes 
with the eigenfrequencies 0ω , 1ω and 2ω respectively, i.e.  
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From equation (3.56), one gets 
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By using equation (3.63), equation (3.62) can rewritten as 

∑
=

−=
3

1

)(
α

ω
αα

α ti
ie eaTtZ                                                                                           (3.65) 

Taking the derivative of (3.61) with respect to t, one gets 
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When 0=t ,  equation (3.61), (3.65) and (3.66) can be used to determine the coefficient 
αia  and the solution for equation (3.50) and (3.52) can be obtained as, 
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  where                                                                                                                          

                                                 
1 For TB 5// = , 31110697.7 −×= mni  and 31410117.7 −×= mne
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Equation (3.57.3) has been taken into account to get a simpler form of M in (3.72). 
Setting the initial condition of the electron to be 0)0( =eZ , the solution for the ion beam 
centroid can be expressed as a 22× transfer matrix, i.e. 
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The matrix elements of ionM are listed in Appendix2, Equation (3.75) can be rewritten 
into a 44× matrix form in Frenet-Serret coordinate system as, 
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The matrix elements jiA , and jiB , are listed in the Appendix 21. In order to obtain the one 
turn betatron oscillation transfer matrix, consider the ion beam transverse motion starting 
from the front end of the solenoid. As the beam going through  the front end, it is affected 
by the fringe field and the effects can be represented by the transfer matrix2  

                                                 
1 For TB 5// = , 100=γ , 31110697.7 −×= mni

 , 31410117.7 −×= mne
and 60 meter long cooling section, the transfer matrix 

'
coolT  can 

be calculated as shown below, 
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2 Reader should not confused the charge number iZ in the following expression with the complex coordinates defined in (3.39) 
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Then the beam need to be transferred into commoving frame since '
coolT is derived in the 

commoving frame. The Lorenz transfer matrix for the transverse plane is given by 
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Inside the solenoid, the ion beam sees the electron beams and the longitudinal magnetic 
field, whose effects to the ion beam centroid have been described by the transfer matrix 

'
coolT defined in (3.91).  At the end of the solenoid, the beam has to be transformed back to 

the lab frame since the edge field effects and the Twiss matrix are all given in the lab 
frame. As the ion beam getting out the solenoid, it sees the fringe field again but in the 
opposite direction, whose effects is described by 1−

CE . Since the drift effects inside the 
solenoid has been considered in '

coolT already, the Twiss matrix should not include it again. 
However, when the beam optics code calculates the betatron tune of the accelerator with 
a cooling section, it automatically takes the cooling section drift into account and thus it 
is necessary to exclude the cooling section drift from the Twiss matrix.  This exclusion 
can be done by inserting the drift transfer matrix for negative half solenoid length  
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on both sides of the Twiss matrix and thus keeping the symmetry of the accelerator. L is 
the length of the solenoid and for RHIC electron cooler, 

meterL 60=  

The Twiss matrix for the whole ring without considering the electron-ion beam coupling 
is given by  
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where yx νν , are the betatron tune including the cooling section drift and yx ββ , are the 
horizontal and vertical betatron functions at the back end of the cooling section. Thus, the 
one turn betatron oscillation transfer matrix is given by 

ClorentzcoollorentzCdriftTwissdriftring ELTLELRLT '11 −−=                                                  (3.92) 

For RHIC,  
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The determinant of ringT for the current RHIC parameters is calculated to be 1 
91002.71 −×=−ringT                                                                                               (3.95) 

 And the eigenvalues of ringT are 
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The amplitudes of the eigenvalues is always slightly different from one and for (3.96), 
they are  
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For TB 5// = , 100=γ , 31110697.7 −×= mni
 , 31410117.7 −×= mne

and 60 meter long solenoid, the transfer matrix ringT  can be 

calculated as shown below, 
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The maximum eigenvalue amplitude is very close to the approximate analytical formula 
given by V.Parkhomchuk for short interaction time, 
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where Λ is given in (3.51) and 
c
l
γ

τ = is the flight time in commoving frame. As shown 

in Fig.9 and Fig 10, for the considered ion beam and lattice parameters, the determinant 
of the transfer matrix and the maximum eigenvalue amplitude are always bigger than 1, 
which can cause the betatron oscillation amplitude increase from turn to turn. For the 
current parameters, the growth rate is  
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where revT is the revolution frequency and meterCrhic 845.3833= is the circumstance of 
RHIC. The growth time is thus 
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Fig.9 The dependence of the eigenvalue amplitude on the electron density. The x axis is the electron density in 
commoving frame, and the units is 3−meter the y axis is the maximum value of 1−λ  as defined in equation (3.97) 
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Fig.10 The dependence of the determinant on the electron density. The x axis is the electron density in commoving 
frame, and the units is 3−meter . The y axis is  1−ringT  as defined in equation (3.95). 

Many facilities such as NAP-M, Fermi lab, Indiana, TARN II and COSY has observed 
the transverse coherent instability induced by the electron-ion coherent interaction and 
different methods have been applied against it. For the dipole instabilities, a feed back 
system is efficient to damp the transverse oscillation amplitude. In the Fermi lab recycler, 
the instabilities stops after the machine have been decoupled for horizontal and vertical 
motions within the cooling section. For RHIC electron cooler, since there is no solenoid 
in the cooling section, this instability will not take place (Ref. Section 3.4). 

  

 
 
 
Section 3.3 Ion clouds effects for the transverse coherent 
instability within a solenoid 

 
If the negative charge from the electron beam is bigger than the positive charge from the 
circulating ion beam1, the ions produced from the residue gas can accumulate inside the 
cooling section unless the incoming beams make their motion unstable. Driven by the 
electron and ion beams, the accumulating ion clouds could oscillate and act back to the 
circulating beams. In section 3.3.1, the ion clouds motion inside a solenoid has been 
                                                 
1 For magnetized electron cooling scheme, the electron charge per bunch is 20nC, which is indeed bigger than the gold ion beam 
charge, 13nC. However, for the non-magnetized electron cooling scheme, the electron charge per bunch is 5 nC and the ion clouds 
can’t accumulate within the cooling section.  



studied and stability condition has been shown for varies magnetic field strength. In 
section 3.3.2, the effects of ion clouds to the transverse coherent oscillation have been 
analyzed. 

 
3.3.1Ion clouds motion in the cooling section 
 

 
Fig.11 Illustration of the ion clouds inside the solenoid. The red ‘+’ represents the ion cloud and the filled 
gray region marked ‘1’ represents the incoming commoving electron and ion bunches and blank region ‘2’ 
represents the space between two successive bunches.   

 

For the first order approximation, assume the displacement of the beam centroid is small 
compared with the beam size and can be ignored for the moment. For simplicity, we also 
assume the electron bunch has the same bunch length with the ion bunch (This 
assumption will not make the result different from the real case since the ion motion will 
only depend on the total electron charge per bunch). The equation of motion for a single 
accumulated ion in region 1 (where the beams are present) is 
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where clz describes single accumulated ion transverse position and defined as 

clclcl iyxz +≡                                                                                     (3.102) 

Equation (3.101) is writing in the lab frame since the ion clouds longitudinal motion is 
slow. The Larmor frequency and the plasma frequencies are defined as1 
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1 All the numbers given in this section are for TB 5// = , 3161063.6 −×= mne

, 3141030.5 −×= mni
 and for hydrogen ion, i.e. 

1=clZ , 
pcl mm = (proton mass). 



Setting the trial solution of (3.101) to be 
ti
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and Inserting (3.106) into (3.101), one get, 
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Thus, the eigenfrequencies are 
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There are two modes for the accumulated ion oscillation with frequency 
1ω and 2ω respectively. So, (3.106) should be rewritten as the superposition of these two 

modes. 
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Set the initial condition at 0=t  to be 
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)0(clcl zz =                                                                                                    (3.111) 

From equation (3.109)-(3.111), one gets 
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where focusM is the transfer matrix for the effects of the beams acting on the accumulating 
ion clouds and is defined as 
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In region 2 ( the space between two successive bunches), ignoring self field interaction, 
the accumulated ions only see the longitudinal magnetic field and thus their equation of 
motion is 
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Integrating equation (3.118), one gets 
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and 



)0()0()0()( cl
ccl

clti

ccl

cl
cl zziezitz ccl +−= −

ωω
ω                                                                     (3.120)                                  

Taking the derivative of equation (3.120) with respect to t , the velocity of the 
accumulated ion is 
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From (3.120) and (3.121), the motion of the accumulated ion can be written into the 
following matrix form, 
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where lamourM is the transfer matrix for the Larmor oscillation when the accumulated ion 
sitting between two bunches and defined as 
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From equation (3.116) and (3.122), the transfer matrix for one whole bunch period ( the 
time interval for two successive bunches passing by) is 
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where 1t and 2t are the bunch length and the spacing between bunches respectively. The  
elements of flM are defined in Appendix 2. The determinant of the transfer matrix is  
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Matrix flM  can be rewrite into a complex form, 

iBAM fl +=                                                                                                               (3.127) 

The matrix elements of A , B are given in Appendix 2. Similar with what we did in 
(3.83)-(3.86), the 44× transfer matrix for the horizontal and vertical motion of the 
accumulated ions can be written as 
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Setting the initial condition for the ion cloud to be (1,0,0,0) and multiplying it by flT for 
20 meters bunch spacing, 0.3 meters bunch length with parameter given below (3.105),   
the orbit of the accumulated ion can be obtained as what shown in Fig.11.1. As shown in 
Fig.11.1 the ion cloud motion is composed of two parts, the Larmor oscillation and the 
drift of the Larmor circle. In order to obtain the drift frequency, consider equation (3.101). 
It has the same form as (3.40) with zero iZ  to the RHS. Following the procedures from 
(3.42) to (3.48), the equation of motion for the Larmor circle guiding center can be 
derived as 
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where clz describes the guiding center and is defined as 
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where 
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cclT
ω
π2

=  is the Larmor period.  The solution of (3.131.1) for each bunch period 

21 tt + is 
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where  
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From (3.103)-(3.105), one gets 
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The guiding center drift phase advance for each bunch period 21 tt + is 

044.01 ==∆ tdriftdrift ωψ  rad                                                                                  (3.131.7) 

For one period of guiding center drift oscillation, the number of bunches needed to pass 
by the ion cloud is  

1422
≈

∆
=

drift

N
ψ
π                                                                                                 (3.131.8) 

This result is consistent with the turn by turn data plotting shown in Fig.11.1. Since the 
drift motion only happens when the bunches passing by the cloud ( 1t out of one bunch 
period 21 tt + ), the average angular drift frequency will be given by the inverse of the 
time needed for one drift oscillation multiplied by π2 , i.e. 
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where  

stt 8
21 1077.6 −×=+                                                                                               (3.131.10) 

The stability condition for ion clouds motion is that the maximal amplitude of the 
eigenvalues of flT  must be equal or smaller than 1, i.e. 

2
max

2
maxmax )Im()Re( λλλ +=                                                                                  (3.132) 

Here we calculate the eigenvalues numerically and the results has been plotted in Fig.12 
and Fig.13. As shown in Fig.12, for a zero magnetic field, a gap of 180 ns is enough to 
clear the ion clouds out of the cooling section. However, as the magnetic field increases,  
the stable region increases as well and when the magnetic field is around a few Tesla, it is 
not likely that the ion clouds can be cleared       out by simply making a gap for the 
circulating beams. One more efficient way could be adjusting the strength of the 
magnetic field to the unstable region as shown in Fig. 13. For instance, when there is no 
magnetic field, bunch spacing of 20 meters will make the ion accumulate inside the 
cooling section but if a longitudinal magnetic field of 0.79-0.98 is applied, the ion clouds 
can be cleared out by the first resonance shown in Fig.13. It is also clear from Fig.13, a 
bunch spacing of 60 meters can not clear out the ion clouds if the magnetic field sitting at 
any region where the maximal amplitude of the eigenvalues is one. Although the 
electrostatic force coming from the ion clouds itself has been ignored in the above 
discussion, it can be included into the equation of motion (3.101) and (3.118) easily as 
shown in the following, 
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Fig.11.1 The orbit of the accumulated ion in the cooling section. The x axis shows the number of bunches passing by 
and the y axis shows the transverse position of the ion. The red solid curve is for the horizontal position and the blue 
dot curve is for the vertical position.  

 



 
Fig. 12 The dependence of the maximal amplitude of the eigenvalues on the bunch spacing. The x axis is the spacing 
between two successive bunches in unit of seconds and the y axis is the amplitude of the maximal eigenvalue. Four 
curve are plotted for magnetic field equal to 0, 0.1,1 and 5 Tesla. The interval between two successive resonances is 
approximately equal to the Lamoure frequency of the ion clouds.The bunch length is taken as 0.3 meters. 
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The ion cloud density is usually expressed into the neutralization factor η  defined as the 
following,. 
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So equation (3.135) can be rewritten as  
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The procedures to solve equation (3.133) and (3.134) are the same as what has been done 
for equation (3.101) and the transfer matrix for them are: 

a). For region 1, i.e. (3.133), the transfer matrix has the same form as (3.117) except the 
eigenfrenquecies includes the ion clouds term now 
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Fig.13 The dependence of the maximal amplitude of the eigenvalues on the field strength of the solenoid. The x axis is 
the longitudinal magnetic field of the solenoid in unit of Tesla and the y axis is the maximal amplitude of the 
eigenvalues. The red solid curve is for the bunch spacing equal to 60 meters (200 ns) and the blue dash curve is for the 
bunch spacing to be 20 meters (67 ns). The bunch length is taken as 0.3 meters. 
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b). For region 2, i.e. (3.134), the transfer matrix also has the similar form as (3.117) 
instead of (3.123) but with a different eigenfrequencies. 
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where 
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 Thus the transfer matrix for one bunch period is 

defocusfocusfd MMM =     

The 44× transfer matrix can be obtained again as  
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By plotting the maximal eigenvalue amplitude of the transfer matrix fdT  as the function 
of the neutralization factorη , a limit for the ion accumulation can be given for a stable 



ion motion. Above the limit, the defocusing effects from the ion cloud itself will stop 
further ion accumulation. As shown in Fig. 14, the limit is around 0074.0=η  for 

TB 2// = and 0011.0=η for TB 5// = .  

 

Section 3.3.2 Transverse coherent instability in the presence of the ion 
cloud 

 
Fig.15 Illustration of the cooling section commoving beams and the ion cloud. The blue dash curve represents the 
electron beams, the red solid curve represents circulating ion beam and the green dot-dash curve represents the 
accumulated ion cloud from the residue gas ionization. The solid spots represents their centroids respectively according 
to the colors and the solid ellipses represent their cross section. 

 

In section 3.2, the coherent two stream instability has been studied and a growth rate of 
7108.2 −×  per turn has been calculated due to the dipole mode centroid oscillation.  One 

may ask what will happen to the two stream interaction in the cooling section if the ion 
cloud from the ionization of the residue gas is not completely cleared out. In this section, 
the effects of the ion cloud to the electron-ion beam long range transverse interaction  
will be studied.  

 

 
Fig. 14, The dependence of the maximal amplitude of the eigenvalues on the neutralization factor η for varies 
magnetic field. The x axis is the neutralization factor and the y axis is the maximal amplitude of the transfer matrix 
eigenvalus. The matrix is calculated from (3.143) with bunch l  ength 0.3 meter and bunch spacing 20 meters (67ns). 

 



Comparing with the situation for section 3.2, one more term due to the ion cloud has to 
be added into equation (3.28) and (3.29). Thus the equations of motion for a single 
circulating ion or a single electron in the lab frame are  
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where the subscribe ‘cl’ stands for ‘cloud’. For consistence with the previous chapter, we 
are going to use primed variables such as ',' ωt for the quantities in lab frame and the non-
primed variables such as ω,t for the quantities in the beam frame.  The equation of 
motion for a trapped ion is 
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where 'Γ  can appear, for example, because of non-linearity of "external" electrical fields 
created by electrons and other kinds of ions. It can be considered as free parameter. 
Typically damping time is about 10-20 periods of the ion coherent perpendicular 
oscillations. Equation (3.143)-(3.145) are written in the lab frame and the plasma 
frequencies are defined as the following, (All the numbers here and later in this section 
are given for the lab frame densities 314103.5' −×= mn i , 317103.3' −×= mn e and the 
hydrogen ion cloud, i.e. 1=clZ and pcl mm =  ) 
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                                                                                                                              (3.146) 
where 

317103.3' −×== mnn ee γ  
314103.5' −×== mnn ii γ  

The cyclotron frequencies are defined as 
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Following the procedures from (3.28) to (3.52), the equations of motion for the beam 
centroids iR , eR and the centroid of the ion cloud clR can be derived as  
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Set the trial solution to be 
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Equation (3.153) is written in the lab frame and the wave number is given by the periodic 
condition for the ion cloud, 

R
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where n  is the harmonic number and R is the radius of the ring. 

Inserting equation (3.153) into (3.152), one gets 
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, which can be rewritten as  
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and the resonant frequencies 2,1'Ω are defined as 
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Inserting (3.153) into equation (3.150), (3.151) and using (3.152.1), one gets 
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where 
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Inserting (3.156) into (3.159) and (3.160), one gets 
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For non-zero solution, the determinant of the coefficient matrix must be zero, which 
gives the dispersion equation, which can be solved numerically for three eigenfrequencies 
and the solution of (3.150) , (3.151) can be written as 
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For 410−=η , )'Re(1.0' 1Ω×=Γ , as an example, the eigenfrequencies are 
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Equation (3.165) and (3.166) has the same form as (3.61) and (3.62). Following the same 
procedures from (3.63) to (3.97), the increments of the eigenvalues can be calculated for 
certain ion cloud damping rate 'Γ and neutralization factorη .  

Fig.16 shows the calculation results of the instability increments for different 
neutralization level. From Fig.14, the threshold of the neutralization lever for an unstable 
ion clouds transverse motion is about 3107 −× , which corresponding an increment of 

01.0 per revolution. The neutralization level is also limited by the vaccum quality and the 
geometry of the cooling section. 
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Fig.16 plots the eigenvalue increment as a function of the neutralization factor for )'Re(1.0' 1Ω×=Γ and 
parameters above (3.146), which shows the coherent instability strongly depends on the neutralization 
factor. 

 
Section 3.4 Coherent instability in the presence of wiggler 
Section 3.4.1 Transversal dipole coherent instability 

 
 
For the wiggler field, the magnetic field in the lab frame is 
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where ⊥B , wλ are the magnitude and the wavelength of the wiggler field respectively. 
Equation of motion for a single electron in cooling section with Wiggler field 
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The centroids equations of motion in x plane are 
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Subtract (3.173) by (3.172), 
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Equation (3) is a forced hamornic oscillator and makes the trial solution to be 
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and inserting (3.175) into (3.174), one gets 
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Set the initial condition to be: 
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Thus the equation of motion for the ion center is 
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Integrate equation (3.177), one gets 
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The transfer matrix for the ring is 
drifttransversedriftxring LMLRM =                                                                              (3.181) 
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For the parameters listed in table 3, the transfer matrix, its determinant increment and the 
eigenvalue increment for the ring are1 
                                                 
1 The plasma frequencies and the wiggler frequency for the parameters listed in Table 3.are 
  mradie /1041.3' 4−×=Ω   mradei /1068.5' 3−×=Ω   mrad /1069.5' 3

0
−×=Ω   mradw /89.41' =Ω   2/0586.0ˆ mmf −=  

 31058.3' −×=ξ   71043.5' ×=wξ  ma 61044.2)60( −×=   mma /1089.2)100(' 8−×=  



 
Wiggler field strength        0.001 T  
Wiggler field wavelength      0.15 m  
Cooling section length       60 m  
Electron beam size             2.36 mm  
Electron rms bunch length        9 mm  
Electron beam charge         5 nC  
Electron Density                  161096.2 × 3−m  
Ion beam horizontal tune 28.23 
Ion beam vertical tune 29.23 
Ion beam charge 12.64 nC  
Ion rms bunch length 0.37 m  
Ion beam size 2.36 mm  
Ion beam density 131031.2 × 3−m  

Table 3. The parameters for the current non-magnetized electron cooler design.  
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To obtain the threshold for the instability, the determinant and eigenvalue increment are 
plotted as a function of the electron beam density in Fig.17, which is the same as the 
straight section case. Thus the threshold for transverse dipole instability is  
 

3191099.2 −×= mnth
e                                                                                                   (3.186) 

 
which is three orders of magnitude larger than the current electron density. 
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Fig.17 The increment of the determinant and the eigenvalues of the transversal transfer matrix  for the ring. 



Section 3.4.2 Longitudinal dipole coherent instability 
 
 

 

Since the wiggler field does not affect the longitudinal motion, the threshold for the 
instability due to Langmuir oscillation can still be determined from equation (2.19) and 
(2.22). 

As shown in Fig.18, the threshold for the determinant less than one is reduced to  
317101.3 −×= mnthd

e                                                                                                         (3.187) 

and for the eigenvalue less than one is reduced to 
316107.7 −×= mnth

e
λ                                                                                                           (3.188) 

After including the rest of the RHIC ring, the threshold from the eigenvalue is the same 
as what from the determinant limitation, which is shown in Fig.18 and described in 
Section 2.4. Since the cooling section is much longer than the magnetized cooling design, 
the maximal growth rate is bigger than the synchrotron tune and the instability could 
happen before the synchrotron motion distorts the longitudinal plasma oscillation. The 
electron bunch length threshold can be estimated from equation (3.187) and Table 3 + 

to be 

cmlth
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Fig. 18 The increments of the determinant and the eigenvalue of the longitudinal transfer Marix for 
parameters listed in table 3. The x axis is the electron density in beam frame in units of 3−m the light blue 
line shows the synchrotron tune, 4107.3 −×  and other curves have the same definition as Fig.4.1. 

 

 

 



Appendix1: Equation of motion for single particle 
 

In this section, we get the solution for the ion beam centroid motion in the cooling section 
due to its interaction with electron beam. However it will be necessary to know the 
behavior of each single ion in the ion beam for the purpose of simulation. The equation of 
motion for single ion particle can be derived as the following. Consider equation (3.9) 

ipieieiiepii RRrr
dt
d 2222

2

2

)( ωωωω −+−=                                                                    (3.25.1)          

Since we already derived the solution for iR , we only need to find the behavior of the 
electron centroid to get a explicit form of the single ion equation of motion. From (3.13) 

)0,()sin()cos()0,(
0

0
0 zRttzRRR iiei ω

ωω +=−                    (3.25.2) 

Thus, we get the solution for eR  
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0
0 zRttzRRR iiie ω

ωω −−=                                                           (3.25.3) 

Insert (3.25.3) into (3.25.1) 
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Insert equation (3.20) into (3.25.4) 
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Thus, the single ion equation of motion inside the solenoid is like a driving oscillator 
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2
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d
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where )(tf is the driving force and given by 
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Since for our case, ξ is small, 
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In the presence of a solenoid, the single ion motion can be described by equation (3.29) 
or 

)ˆ()()( 22
2

2
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dt
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dt
d

iciiipieiiei ×+−+−−= ωωω                                       (3.100.1) 

Write the above equation into the vertical and horizontal plane, 
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Here iz describes the single ion position and defined as 

iii iyxz +=                                                                                          (3.100.5) 

Equation (3.100.4) can be rewritten as 

ipieieiiepiicii ZZzz
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diz
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From (3.73),  

)0()0()( 1211 iii ZmZmtZ +=                                                                      (3.100.7) 

)0()0()( 3231 iie ZmZmtZ +=                                                                      (3.100.8) 

where 11m , 12m , 31m and 32m  are defined in (3.76)-(3.79.2) 

Thus the equation of motion for a single ion is  
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where the driving force )(tf is defined as the following 
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We obtained the equation of motion of single ion and by numerically integrating the 
equation of motion, the beam behavior can be predicted. 



Appendix2:Transverse Transfer Matrix Elements Definition 
 

The matrix elements of the complex matrix ionM can be obtained from (3.72) as the 
following, 
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The matrix elements for the corresponding real and imaginary part of ionM  jiA , and 

jiB , are 
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The transfer matrix for the ion clouds motion within the solenoid, flM , has the following 
elements 
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Matrix flM  can be rewrite into a complex form, 

iBAM fl +=                                                                                                               (3.127) 

where, 
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and the matrix elements are given as the following, 
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