BNL Home

Add Event to Your Calendar

To add this event to your calendar, click on the "Add to My Calendar" button below.

  1. FEB

    24

    Monday

    Condensed-Matter Physics & Materials Science Seminar

    "Field-theoretical approach to strongly-correlated problems: RIXS in metals and Spin fermion model"

    Presented by Igor Tupitsyn, University of Massachusetts Amherst

    11 am, ISB Bldg. 734 Conf. Rm. 201 (upstairs)

    Monday, February 24, 2020, 11:00 am

    Hosted by: Alexei Tsvelik

    In this talk I am going to touch two interesting strongly-correlated problems: Resonant inelastic x-ray scattering (RIXS) in metals and Spin fermion (SF) model. RIXS is a very promising technique for studying collective excitations in condensed matter systems. However, extraction of information from the RIXS signal is a difficult task and the standard approach to solution of RIXS problem is based on approximations that are inaccurate in metals (short-range/contact potentials and non-interacting Fermi-sea). Simultaneously, the SF model has a wide range of applications in the physics of cuprates and iron-based superconductors. However, all developments and applications of the SF model are also based on various, often uncontrollable, approximations. In my talk I am going to address both problems within the general "field-theoretical approach to strongly-correlated problems" framework. In the first part I will consider the RIXS in metals problem within a diagrammatic approach that fully respects the long-range Coulomb nature of interactions between all charged particles. In particular, I will demonstrate how the single-plasmon dispersion can be extracted from the multi-excitation RIXS spectra. In the remaining time I will briefly discuss how to deal with the SF model in the approximation-free manner by employing the Diagrammatic Monte Carlo technique, combining the advantages of Feynman diagrammatic techniques and Quantum Monte Carlo simulations. I will also show what one can get in the first skeleton order – in the widely used in materials science GW approximation.

Add to My Calendar

Not all computers/devices will add this event to your calendar automatically.

A calendar event file named "calendar.ics" will be placed in your downloads location. Depending on how your device/computer is configured, you may have to locate this file and double click on it to add the event to your calendar.

Event dates, times, and locations are subject to change. Event details will not be updated automatically once you add this event to your own calendar. Check the Lab's Events Calendar to ensure that you have the latest event information.