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1. Context: Why are we talking about CTQMC?

2. Background: What is the quantum impurity problem?

3. CTQMC:  How do we solve the quantum impurity problem with CTQMC?

4. Observables: How do we compute the self-energy needed by DMFT?

5. Limitations: What can’t we do with CTQMC?

6. Questions



1. Context
Continuous Time Quantum Monte Carlo (CTQMC)
• Solves quantum impurity problems, e.g., the heart of the DMFT equations

DMFT: A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Rev. Mod. Phys., vol. 68, p. 13, 1996.
DFT+DMFT: G. Kotliar et al., Rev. Mod. Phys., vol. 78, no. 3, pp. 865–951, 2006.
Solver (CTQMC): E. Gull et al., Rev. Mod. Phys., vol. 83, no. 2, pp. 349–404, 2011.



1. Context
Solvers

Why CTQMC?
• Only exact quantum impurity solver which handles real materials
• Extremely parallelizable (near ideal scaling)
• GPU accelerated (up to 225x for f-shell problems)

Exact Approximate

Numerical renormalization group (NRG) One-crossing approximation (OCA)

Exact Diagonalization (ED) Hubbard-one

CTQMC



2. The Quantum Impurity problem
Anderson Impurity Model

• Hamiltonian:

𝑯𝑨𝑰𝑴 = ∑𝒌 𝝐𝒌𝒄𝒌
%𝒄𝒌

+𝝐𝒇𝒇"𝒇 + 𝑼𝒏↑𝒏↓ + ∑𝒌(𝑽𝒌 𝒄𝒌
"𝒇 + 𝑽𝒌∗𝒇"𝒄𝒌)

• Action:

𝑺 = ∑𝒊𝒋∬𝒇𝒊
% 𝝉 𝓖𝟎,𝒊𝒋*𝟏 (𝝉 − 𝝉′)𝒇𝒋 𝝉′ 𝒅𝝉𝒅𝝉,

+∑𝒊𝒋𝒌𝒍∬𝒇𝒊
" 𝝉 𝒇𝒋

" 𝝉′ 𝓤𝒊𝒋𝒌𝒍(𝝉 − 𝝉′)𝒇𝒌 𝝉′ 𝒇𝒍 𝝉 𝒅𝝉𝒅𝝉*

Ø A dynamical mean-field and a (dynamical) interaction



2. The Quantum Impurity problem: Solution
What does it mean to solve an impurity problem?

• Correlation and vertex functions 
• 𝑮𝒊𝒋(𝝉 − 𝝉*) = −⟨𝑻𝝉𝒇𝒊 𝝉 𝒇𝒋

" 𝝉′ ⟩
• 𝚺 = 𝓖𝟎-𝟏 − 𝑮-𝟏

• 𝑮𝒊𝒋𝒌𝒍 𝝉 − 𝝉* = − 𝑻𝝉𝒇𝒊 𝝉 𝒇𝒋
" 𝝉 𝒇𝒌 𝝉* 𝒇𝒍

" 𝝉*

• 𝚪 = 𝝌𝟎-𝟏 − 𝝌-𝟏

C. Melnick et al., “Accelerated impurity solver for DMFT and its diagrammatic extension” arxiv
2010.08482 (2020)



3. CTQMC: The Idea
1. Split the Hamiltonian into two parts

𝑯 = 𝑯𝒂 +𝑯𝒃
2. Expand the partition function in orders of 𝑯𝒃

𝒁 = ∫𝓓 𝒇, 𝒇" 𝒆-𝑺 = 𝑻𝒓 𝑻𝝉𝒆-𝜷𝑯𝒂𝒆𝒙𝒑 −∫𝒅𝝉𝑯𝒃 𝝉
= ∑𝒌 −𝟏 𝒌 ∫𝟎

𝜷𝒅𝝉𝟏…∫𝝉𝒌#𝟏
𝜷 𝒅𝝉𝒌 𝑻𝒓 𝒆-𝜷𝑯𝒂𝑯𝒃 𝝉𝒌 …𝑯𝒃 𝝉𝟏

= ∑𝒌𝜸∫𝟎
𝜷𝒅𝝉𝟏…∫𝝉𝒌#𝟏

𝜷 𝒅𝝉𝒌𝒘(𝒌, 𝜸, 𝝉𝟏, … . , 𝝉𝒌)

• 𝑯𝒂 is something “easy” to compute

• Example: (CT-HYB)
a) 𝑯𝒂 ∶ Local (atomic) Hamiltonian
b) 𝑯𝒃 ∶ Hybridization functions



3. CTQMC: How do we sample the expansion?
1. We have integral of weights for diagrams of expansion order 𝒌

𝒁 = ∑𝒌5𝟎6 ∑𝜸∫𝟎
𝜷𝒅𝝉𝟏…∫𝝉𝒌#𝟏

𝜷 𝒅𝝉𝒌𝒘 𝒌, 𝜸, 𝝉𝟏, … . , 𝝉𝒌

2. Create a Markov Chain of diagrams
a. Propose updates to the current diagram

• Insert or remove vertices

b. Metropolis-Hastings 
𝑹𝒙→𝒚 =

𝒘 𝒚 𝑾𝒚𝒙

𝒘 𝒙 𝑾𝒙𝒚

c. accept or reject the move
𝒓 < 𝒎𝒊𝒏(𝟏, 𝑹𝒙→𝒚)



3. CTQMC: CT-HYB
Within the hybridization expansion, we take the
atomic Hamiltonian as Ha, and the
hybridization as Hb

𝒘 𝒌, 𝜸, 𝝉𝟏, … . , 𝝉𝒌 = 𝒘 𝒙 = 𝒘𝒍𝒐𝒄𝒘𝒉𝒚𝒃

1. The local impurity trace

𝒘𝒍𝒐𝒄 𝒙 = 𝐓𝐫 𝒆-𝜷𝑯𝒍𝒐𝒄𝑻𝝉R
𝒓

𝒌

𝒇𝒊𝒓+ 𝝉𝒓
* 𝒇𝒊𝒓

" 𝝉

2. The hybridization matrix determinant

𝒘𝒉𝒚𝒃 𝒙 =R
𝒓

𝒌

𝚫𝒊𝒓𝒊𝒓+ (𝝉𝒓 − 𝝉𝒓
* ) = 𝐃𝐞𝐭𝚫



4. Observables: The idea
• Now we need to figure out how to compute the desired observables

𝑮𝒊𝒋(𝝉 − 𝝉*) = −⟨𝑻𝝉𝒇𝒊 𝝉 𝒇𝒋
" 𝝉* ⟩

𝑮𝒊𝒋𝒌𝒍(𝝉 − 𝝉*) = −⟨𝑻𝝉𝒇𝒊 𝝉 𝒇𝒋
" 𝝉 𝒇𝒌 𝝉′ 𝒇𝒍

" 𝝉′ ⟩

• Just as we wrote an expansion for the partition function, we can write an expansion for 
the local observable

𝑶 = 𝒁-𝟏X𝓓 𝒇, 𝒇" 𝒆-𝑺𝑶

• We use this to accumulate an estimate of the observable as we sample 𝒁

𝑶 = 𝒁-𝟏Y
𝒙

𝒘(𝒙,𝑶) = 𝒁-𝟏Y
𝒙

𝒘(𝒙)
𝒘(𝒙, 𝑶)
𝒘(𝒙) = 𝒁-𝟏Y

𝒙

𝒘 𝒙 𝒐(𝒙, 𝑶)



• Consider the one-particle green’s function

𝑮𝒊𝒋(𝝉 − 𝝉*) = 𝒁-𝟏Y
𝒙

𝒘(𝒙)
𝒘(𝒙, [𝒇𝒊 𝝉 [𝒇𝒋

" 𝝉* )
𝒘(𝒙)

• It is easier to remove hybridization lines than it is to insert new operators
• k-2 measurements
• Precomputed weights

• 𝑮𝒊𝒋(𝝉 − 𝝉*) = 𝒁-𝟏∑𝒙𝒘(𝒙)
𝒘(𝒙,B𝒇𝒊 𝝉 B𝒇𝒋

. 𝝉+ )

𝒘(𝒙)
= 𝟏

𝑵
∑𝒏𝑵[∑𝒓𝒔𝜹𝝉-𝝉,𝝉𝒓-𝝉𝒔+ 𝜹𝒊𝒊𝒔+𝜹𝒋𝒊𝒓𝐌𝐬𝐫

-𝟏]𝒏

4. Observables: Example



• Better basis sets (Matsubara, Legendre or other, more advanced, ideas)

𝑮𝒊𝒋(𝒊𝝎𝒏) = Y
𝒓𝒔

𝒆𝒊𝝎𝒏 𝝉𝒔+-𝝉𝒓 𝜹𝒊𝒊𝒔+𝜹𝒋𝒊𝒓𝚫𝐬𝐫
-𝟏

𝑮𝒊𝒋(𝒍) = Y
𝒓𝒔

𝑷𝒍 𝝉𝒔* − 𝝉 𝜹𝒊𝒊𝒔+𝜹𝒋𝒊𝒓𝚫𝐬𝐫
-𝟏

• We cannot measure when 
• 𝒘 𝒙 → 𝟎 and 𝒘 𝒙,𝑶 → 𝟎

• You can’t measure 𝑮𝒊𝒋 unless 𝚫𝒊𝒋 is non-zero
• No big deal in DFT+DMFT: 𝚫𝒊𝒋 = 𝟎 implies 𝑮𝒊𝒋 = 𝟎

• Big issue in GW+DMFT:
• 𝑮𝒊𝒋𝒌𝒍 ≠ 𝟎 when 𝚫𝒊𝒋 = 𝟎 or 𝚫𝒌𝒍 = 𝟎
• We can typically only measure 𝑮𝒊𝒊𝒋𝒋 components in a similar manner to 𝑮𝒊𝒋!

4. Observables: Practicalities and Limitations

L. Boehnke, H. Hafermann, M. Ferrero, F. Lechermann, and O. Parcollet, “Orthogonal polynomial 
representation of imaginary-time Green’s functions,” Phys. Rev. B, vol. 84, no. 7, p. 75145, Aug. 2011



• Recall
• “It is easier to remove hybridization lines”

• Add to local operators into configuration using Metropolis-Hastings

• “Worm” from partition space into Green’s function space (or any observable space!)

4. Observables: The Worm Algorithm

P. Gunacker et al. “Continuous-time quantum Monte Carlo using worm sampling,” Phys. Rev. B, vol. 92, 
no. 15, p. 155102, 2015



• With this idea, we can sample any correlator 
“easily”
• The more operators and times, the more 

samples we require
• Relative sizes and Wang-Landau

4. Observables: Worm Spaces

C. Melnick et al., “Accelerated impurity solver for DMFT and its diagrammatic extension” arxiv
2010.08482 (2020)



• Measurement is trivial!
• Just count how often we wind up in a particular 

Green’s function space
𝑮𝒊𝒋(𝒊𝝎𝒏) = 𝒆𝒊𝝎𝒏 𝝉+-𝝉

𝑮𝒊𝒋
𝑮𝒊𝒋𝒌𝒍(𝒊𝝎𝒏) = 𝒆𝒊𝝎𝒏 𝝉*-𝝉

𝑮𝒊𝒋𝒌𝒍

4. Observables: Worm Measurements



• Briefly mentioned that Vertex functions converge much 
slower than correlation functions
• 𝑮𝒊𝒋(𝝉 − 𝝉*) = −⟨𝑻𝝉𝒇𝒊 𝝉 𝒇𝒋

" 𝝉′ ⟩
• 𝚺 = 𝓖𝟎-𝟏 − 𝑮-𝟏
• 𝜹𝚺 = 𝐆-𝟐𝜹𝑮 ∝ 𝝎𝒏

𝟐𝜹𝑮

• It is much better to sample 𝐆𝚺
• 𝚺 = 𝑮-𝟏𝑮𝚺
• 𝜹𝚺 = 𝐆-𝟐𝑮𝚺𝜹𝑮 + 𝑮-𝟏𝜹(𝑮𝚺) ∝ 𝝎𝒏𝜹𝑮𝜹(𝑮𝚺)

• Improved estimators can be generated from the 
equations of motion
• 𝐆𝚺 = −⟨𝑻𝝉 𝒇𝒊, 𝑼 𝝉 𝒇𝒋

"⟩
• 𝐇 = −⟨𝑻𝝉 𝒇𝒊, 𝑼 𝝉 𝒇𝒋

"𝒇𝒌𝒇𝒍
"⟩

4. Observables: Improved Estimators

H. Hafermann et al., Phys. Rev. B., vol. 85, no. 20, pp. 1–14, 2012
P. Gunacker et al., Phys. Rev. B, vol. 94, p. 125153, 2016. 



• We have ignored a big problem for CTQMC: the infamous sign problem!
• Consider the Metropolis-Hastings algorithm

𝑹𝒙→𝒚 =
𝒘 𝒚 𝑾𝒚𝒙

𝒘 𝒙 𝑾𝒙𝒚
• This only works if 𝒘 𝒙 ≥ 𝟎
• But we are working with Fermions so 𝒘 𝒙 ≤ 𝟎 is quite possible
• We make the following adjustment

𝑹𝒙→𝒚 =
|𝒘 𝒚 |𝑾𝒚𝒙

|𝒘 𝒙 |𝑾𝒙𝒚

• We are no longer sampling 𝒁, we are sampling |𝒁|!
• So, we must adjust our observable estimators

𝑶 =
𝒁
𝒁 ⟨

𝒘 𝒙
𝒘 𝒙 𝒐 𝒙,𝑶 ⟩

5. Limitations: The sign problem



• Examining our expression for the observable

𝑶 =
𝒁
𝒁 ⟨

𝒘 𝒙
𝒘 𝒙 𝒐 𝒙,𝑶 ⟩

• Let us call
𝒁
|𝒁|

the average sign, 
𝒘 𝒙
𝒘 𝒙

, of the simulation

𝒁
|𝒁|

= ⟨
𝒘 𝒙
𝒘 𝒙

⟩

• As the sign vanishes, 𝒁
|𝒁|
→ 𝟎

• We are collecting data which barely affects the estimator
• More and more samples are required to converge the estimate 
• Computational requirements explode as 1/sign

5. Limitations: Computational Cost of the Sign Problem



• What exacerbates the sign problem?
• Low temperature:

• 𝐓 → 𝟎 : sign→ 𝟎
• Off-diagonal elements in the hybridization matrix

• 𝚫𝒊𝒋 ≠ 𝟎 for 𝒊 ≠ 𝒋
• What Helps?

• Ising interactions only!
• 𝑼𝒊𝒋𝒌𝒍 = 𝟎 for 𝒊 ≠ 𝒋, 𝒌 ≠ 𝒍 or 𝒊 ≠ 𝒍, 𝒋 ≠ 𝒌

• Basis
• Example: Fe at 600 K 

• Relativistic basis: sign < 0.1
• Cubic harmonics: sign > 0.9

• Example: delta-Pu (figure) 
• Symmetry adapted basis: T > 100 K
• J-basis: T > 40 K

5. Limitations: Behavior of the Sign Problem



• Local impurity trace

𝑤imp C = Tr 𝑒-NO123𝑇PR
Q

R

𝑐S4+(𝜏Q
* )𝑐S4

" (𝜏Q) = Tr 𝑃N-P5𝐹S5
"𝑃P5-P5+ 𝐹S5+ …𝐹S6𝑃P6-P6+𝐹S6

"𝑃P6+

where 𝐹S 𝑚𝑛 = 𝑚 𝑐𝑖 𝑛 , 𝑃P = 𝑒-PO123
• 𝑭𝒊 is a matrix of rank 2n

• n is the number of orbitals (d: n =10 or f: n =14)
Ø Computation is of order O[k (2n )3]

• Even with GPUs, this is prohibitive
• Decompose Hilbert space H    into sectors according to the Abelian symmetries, each of 

which has its own unique set of quantum numbers (N, Sz, etc.)
H =⊕𝒒5𝟏

𝑵 H (q)
[𝐹S(𝑞U)]𝑚𝑛 = 𝑚(𝑞UVW) 𝑐𝑖 𝑛(𝑞U)

• These matrices are of much smaller rank! 
• Store sub-products: O(k) → O(log k)

5. Limitations: Computational Bottleneck

P. Sémon, C.-H. Yee, K. Haule, and A.-M. S. Tremblay, Phys. Rev. B, vol. 90, p. 75149, 2014.



• For smaller problems and at low temperature, computing the hybridization weights is the 
bottleneck, which requires taking the ratio of determinants: O(k2) 

• GPU’s can handle the multiplication of many large matrices very well
• We have achieved 15 - 225x acceleration of a Summit node for Plutonium problems 

(depending on the details)! 

• CTQMC is massively parallelizable
• Each Markov chain is entirely independent
• Communication only at beginning and end
• As long as measurement phase is long, scaling is ideal!
• We’ve run ComCTQMC on 1000 nodes on Summit at 95% of the ideal.

• Petascale!  

5. Limitations: Overcoming Bottlenecks



6. Questions?


