
Hands-on ComCTQMC
Corey Melnick (cmelnick@bnl.gov)

Outline
1. A very brief tour of the code

2. Compilation

3. Usage

4. Results

5. Troubleshooting and Guidance

Tour
cd ~/codes/Compiled_ComsuiteCode/ctqmc.June.18.2021
• The software is comprised of two main codes, CTQMC and EVALSIM

• CTQMC is the main algorithm which solves the impurity problem
• Massively parallelizable with ideal scaling in the main algorithm
• GPU accelerated for f-shell or CDMFT problems

• EVALSIM is post-processing algorithms which translate the raw results into observables
• Nearly serial (but runs quickly)

• These are C++ and CUDA codes which use MPI to handle parallelization.
• LAPACK / BLAS are used for linear algebra on the CPU (or host)
• CUTLASS is used for matrix multiplications on the GPU (or device)

• There is a python script, plot.py, which helps users to inspect their results
• There is a library libctqmc.so which helps users to embed CTQMC in their own project

Compilation
• Two options are available for compilation: GNU make, or Cmake

• GNU make
• First, you need to configure makefile.in so that the makefile knows where to find the various

libraries, to know which compilers to use, etc.
• Makefile.help.in provides an explanation of many options
• Makefile_Examples/ provides many examples of configuration files for different systems

• For your virtual box, you can use Makefile_Examples/MakefileGNU.in
cp Makefile_Examples/MakefileGNU.in Makefile.in
make

• Cmake
• Cmake is a way to generate a configuration file automatically
mkdir build; cd build
cmake .. (won’t work on your virtual machine – need to install newer cmake)
make

Usage
• First, let’s go to a directory
cd examples/Hubbard

• To use ComCTQMC, you must first make an input file parameterizing the system. Let’s take a
look at the existing file

vim params.json
(use whichever editing tool you’d like, “:q” exits vim)

• We also need a file describing the hybridization functions
vim hyb.json

• Now, we can run
../../bin/CTQMC params
../../bin/EVALSIM params

(params is the name you give to the input file)

Output: stdout
There are a few lines from the stdout (output to your terminal or log file) which are worth noting.

Number of invariant subspaces: 4
Dimension of the biggest subspace: 1

• If you recall from my earlier talk – we partition the Hilbert space into subspaces. The more subspaces we get
and the smaller they are, the faster CTQMC will run.

• This problem is as simple as it gets (1-band hubbard), so our operator matrices are only of rank 1!

partition eta = 1

• This gives a list of the relative size of the configuration spaces sampled
• If you are using the worm algorithm, you’ll see a list of eta’s. Each eta corresponds to the size of that space

relative to the partition space.
• Try changing the input “green-”: { … } field to turn on the green’s function configuration space

Output: files
• A few files are produced by CTQMC

1. params.info.json
• Description of the run

2. defaults.json
• All of your input parameters, plus any options which were left to the default values

3. params.meas.json
• The raw results in base 64.

4. params.err.json (when run in parallel with mpirun -n {N > 1})
• Error estimates for observables

5. config_x.json
• A description of the final state of each Markov chain (reduces thermalization time)

• And one file is produced by EVALSIM
1. params.obs.json

• The collection of observables

Output
1. Let’s look at the self-energy and green’s function
python ../../bin/plot.py --field=green ; python ../../bin/plot.py --field=self-energy

Output
1. Let’s look at the expansion histogram

python ../../bin/plot.py --field=“expansion histogram”

• This gives you idea of how hard your problem is.
• Here, we see that we are having to deal with

roughly k=16, a fairly low order of expansion.
• If we reduced the temperature, we’d end up

with larger and larger expansions.

Troubleshooting and Guidance
• How do I create inputs?

• Typically, CTQMC will be embedded in another code!
• DMFT
• Periodic-Anderson model
• CDMFT
• DCA

• These codes need to handle the generation of your inputs, as they need to compute the
hybridization functions and supply a description of the atomic or local Hamiltonian

• We provide some options to simplify a description of the interaction tensor
• Slater-Condon interaction Uijkl in some basis

• In relativistic (“coupled”)
• Non-relativistic (“product real”)
• With or without some transformation
• With or without Ising approximation

Troubleshooting and Guidance
• How much time do I give to ComCTQMC?

1. Thermalization time
• No great way to tell if a Markov chain is thermalized before measurement starts.
• Fortunately, config_x.json saves your old configurations and removes the need for

substantial thermalization (if you are converging DMFT)
• If you are doing a one-shot CTQMC, you need to test that results do not change as you

increase thermalization.

2. Measurement time
• Running in parallel: check params.err.json

• Relative error of 10-20% good enough for DMFT (params.err.json has raw error)
𝒆𝒓𝒓𝒐𝒓
𝒕𝒊𝒎𝒆 ∝ 𝒕𝒊𝒎𝒆!𝜶

• Eye test: Just look at your self-energy and see that it’s smooth at high frequencies!

Troubleshooting and Guidance
• Eye test: Just look at your self-energy and see that it’s smooth at high frequencies!

• Not enough time! (Too wobbly) More than enough time

Troubleshooting and Guidance
• How high of an energy cutoff?

• 10-15 eV tends to be good
• Check that the high frequency tail looks appropriate
• Too high = high error | Too low = “kink” at the transition | Just right = smooth transition

Troubleshooting and Guidance
• Quantum numbers

• Array of values corresponding to each orbital on the impurity, 𝒒𝒊𝑰
• These define bilinears used by CTQMC to deal with dynamical interactions

• 𝑸𝑱 = 𝒒𝒊𝑱𝒄𝒊
#𝒄𝒊

• We require
• 𝑯,𝑸𝑰 = 𝟎 (we will throw an error message if this is not met)

• Unless you are
• Measuring a quantum number susceptibility
• Applying a dynamical interaction on that quantum number

• Save yourself some trouble by testing quantum numbers after CTQMC
• Enter them into params.json after CTQMC but before EVALSIM

• Examples:
• N = [1,1,…,1] is always a good quantum number
• Sz = [0.5,…,-0.5,…] is often a good quantum number for a non-relativistic impurity

Troubleshooting and Guidance
• Input cutoff energies

• Hybridization (and dynamical functions) should be smoothly going to zero at high
frequencies.

• You need to provide sufficient frequencies to reach this asymptotic behavior.

• Non-physical inputs can lead to crashes in the algorithm (overflows and underflows)
• Crash like: “Zahl:: constructor is not a number”
• Input cutoff energies are too low
• Hybridization functions not going to zero
• Fourier transform of Hybridization function extremely numerically sensitive (likely unphysical)

