comscope

Global phase diagram of a spin-orbital Kondo impurity model and the suppression of Fermi-liquid scale

Yilin Wang

Brookhaven National Laboratory (BNL)

11/04/2019

Y. Wang et al. arXiv: 1910.13643

Elias Walter et al. arXiv:1908.04362

Center for Computational Material Spectroscopy and Design

Collaborators

Elias Walter

Ludwig-Maximilians-Universität

(LMU), Munich

Seung-sup Lee (LMU)

Katharina Stadler (LMU)

Jan von Delft (LMU)

Andreas Weichselbaum

(BNL, LMU)

Gabriel Kotliar (Rutgers, BNL)

Motivation: very small T_{FL} in many correlated metallic materials

- Many correlated metallic materials can be described by the Landau Fermi-liquid theory at low energies
- but, the Landau Fermi-liquid coherence scale T_{FL} is found to be surprisingly small in many materials
- The Hund metals, including ruthenates, iron-based superconductors, are such class of materials
- For Landau FL theory, below T_{FL} , we would expect that the resistivity will show T² law and $\gamma(T)=C(T)/T \sim constant$

Small coherence scale in Hund metals

Compound	Magnetic order	$\gamma/\gamma_{\rm LDA}$	$\rho \propto T^2$	Remarks
Sr ₂ RuO ₄	PM	4	<25 K	Unconventional SC < 1.5 K
SrRuO ₃	FM < 160 K	4	<15 K	$\sigma \propto \omega^{-0.5}$
Sr ₃ Ru ₂ O ₇	PM	10	<10 K	Metamagnetic quantum-critical point and nematicity
CaRuO ₃	PM	7	$T^{1.5} > 2 \ K$	$\sigma \propto \omega^{-0.5}, \gamma = \gamma_{ m FL} + \log(T)$
Ca ₂ RuO ₄	AF < 110 K	x	X	Insulator < 310 K

Hund metals: Strong correlation from Hund's coupling

A. Georges *et. al* Annu. Rev. Condens. Matter Phys. 4,137–78 (2013)

3-orbital Hubbard Model, DMFT

Luca de' Medici et. al, PRL 107, 256401 (2011)

half-filling

away from half-filling J=0 J=0.05U 0.8 J=0.10UJ=0.15U 0.6 =0.25U0.4 0.2 0 2 0 6 8 10 U/D

(b) N = 2

Janus-faced influence of Hund couplings:

High energy: It drives the system away from Mott transition
 Low energy: It largely suppresses the coherence scale T_{FL}, above T_{FL}, it shows NFL behavior

 $J_K \propto 1/S$ $T_K \propto exp(-1/J_K)$

NFL: Spin-freezing and power-law behavior of self-energy above T_{FL}

Philipp Werner *et al*. PRL 101, 166405 (2008)

 $\langle S_z(\tau)S_z(0)\rangle$ saturates to finite value at longer time, indicating frozen moments, "frozen-metal"

K. Haule and G. Kotliar, NJP, 11, 025021 (2009) (a) 3.0 (a) 2.5 (a) 3.0 (a) 2.5 (a) 3.0 (a) 2.5 (a) 3.0 (a) 3.0(a)

fractional power-law NFL self-energy

Z. P. Yin *et al.* PRB **86**, et al.195141 (2012)

Spin-Orbital-Separation (SOS) in Hund metals revealed by DMFT+NRG study

3-orbital Hubbard model K. M. Stadler *et al.* PRL 115, 136401 (2015), Annals of Physics 405, 365 (2019)

$$\hat{H} = \sum_{i} (-\mu \hat{N}_{i} + \hat{H}_{int}[\hat{d}_{i\nu}^{\dagger}]) + \sum_{\langle ij \rangle \nu} t \hat{d}_{i\nu}^{\dagger} \hat{d}_{j\nu}, \quad (1a)$$

$$U(1)_{ch} \times SU(2)_{sp} \times SU(3)_{orb} \text{ symmetry}$$

$$\hat{H}_{int}[\hat{d}_{i\nu}^{\dagger}] = \frac{3}{4} J \hat{N}_{i} + \frac{1}{2} \left(U - \frac{1}{2} J \right) \hat{N}_{i} (\hat{N}_{i} - 1) - J \hat{\mathbf{S}}_{i}^{2}. \quad (1b)$$

left: with DMFT self-consistency

right: without DMFT self-consistency, one-shot solution of Anderson model

Open questions

- The solution of the (LDA+) DMFT equations is a complex problem, which generically yields a nonzero FL scale
- How to reduce the FL scale to exactly zero?
- How to characterize the ensuing anomalous NFL behavior above $T_{FL}\,?$

Calculate the global phase diagram of a three channel spin-orbital Kondo (3soK) model using NRG method

Z.P. Yin et al. PRB86, 195141 (2012)

C. Aron and G. Kotliar PRB 91, 041110R (2015)

Schrieffer-Wolff transformation of the three orbital Anderson model

$$\begin{split} H_{\rm K} &= H_{\rm bath} + H_{\rm int} & U(1)_{\rm ch} \times {\rm SU}(2)_{\rm sp} \times {\rm SU}(3)_{\rm orb} \text{ symmetry} \\ H_{\rm bath} &= \sum_{k,m,\sigma} \epsilon_k \psi^{\dagger}_{km\sigma} \psi_{km\sigma} & \text{flat bath, with D=1} \\ H_{\rm int} &= J_0 \, S^{\alpha} \left(\psi^{\dagger}_{m\sigma} \frac{\sigma^{\alpha}_{\sigma\sigma'}}{2} \psi_{m\sigma'} \right) & \text{spin spin interaction, impurity spin } \boldsymbol{S} = 1 \\ &+ K_0 T^a \left(\psi^{\dagger}_{m\sigma} \frac{\tau^a_{mm'}}{2} \psi_{m'\sigma} \right) & \text{orbital orbital interaction, impurity orbital isospin } \boldsymbol{T} \text{ in the} \\ &\bar{3}, \text{ i.e. (01) representation of SU(3) group } [L=1 \text{ in SU(2)}] \end{split}$$

 $+I_0 S^{\alpha} T^a \left(\psi_{m\sigma}^{\dagger} \frac{\sigma_{\sigma\sigma'}^{\alpha}}{2} \frac{\tau_{mm'}^{a}}{2} \psi_{m'\sigma'}\right)$ spin-orbital spin-orbital interaction

[L=1 in SU(2)]

 J_0, K_0, I_0 are bare Kondo couplings, **positive (AFM)**, **negative (FM)**, $K_0=0.3$ throughout They will be renormalized to effective values *J*, *K*, *I* during RG process

NRG computational details

- The bath is discretized logarithmically and mapped to a semi-infinite "Wilson chain" with exponentially decaying hoppings, and the impurity coupled to chain site k=0.
- The chain is diagonalized iteratively (adding one more site each iteration), while discarding high-energy states, thereby zooming in on low-energy properties: the finite-size level spacing of a chain ending at site $k \ge 0$ is of order $\omega_k \propto \Lambda^{-k/2}$
- Here $\Lambda > 1$ is a discretization parameter chosen to be 4 in this work.
- The RG flow can be visualized by plotting the rescaled low-lying NRG eigenlevel spectra, $E = (\mathcal{E} \mathcal{E}_{ref})/\omega_k \text{ vs. } \omega_k$, as increasing even or odd k

The imaginary part of dynamical susceptibilities at the impurity site or zeroth bath site at $T=10^{-16}$

$$\begin{split} \chi^{\rm imp, bath}_{\rm sp}(\omega) &= -\frac{1}{3\pi} {\rm Im} \sum_{\alpha} \langle S^{\alpha} || S^{\alpha} \rangle_{\omega}, \\ \chi^{\rm imp, bath}_{\rm orb}(\omega) &= -\frac{1}{8\pi} {\rm Im} \sum_{a} \langle T^{a} || T^{a} \rangle_{\omega}, \\ \chi^{\rm imp, bath}_{\rm sp-orb}(\omega) &= -\frac{1}{24\pi} {\rm Im} \sum_{\alpha, a} \langle S^{\alpha} T^{a} || S^{\alpha} T^{a} \rangle_{\omega}, \end{split}$$

QSpace tensor library

Non-abelian symmetries in tensor networks: A quantum symmetry space approach Andreas Weichselbaum

Annals of Physics 327 (2012) 2972-3047

FL Phase

 $[0, 1, (01)] \otimes [+1, \frac{1}{2}, (10)] \rightarrow [+1, \frac{3}{2}, (00)] \oplus [+1, \frac{1}{2}, (00)]$ $[+1, \frac{3}{2}, (00)] \otimes [-3, \frac{3}{2}, (00)] \rightarrow [-2, 0, (00)]$

Singular-Fermi-liquid (SFL) Phase

0.0

 10^{-16}

 10^{-10}

10-7

T

10⁻¹³

 $\ln 1$

 10^{2}

 10^{-1}

 10^{-4}

underscreened spin fully screened orbitals

 $[0,1,(01)] \otimes [+1,\frac{1}{2},(10)] \rightarrow [+1,\frac{3}{2},(00)] \oplus [+1,\frac{1}{2},(00)]$

Tensor product of FL spectrum and impurity S=1/2, with residual effective FM Kondo couplings in spin sector at intermediate energies, showing singular behavior

 $\chi_{\rm sp}^{\rm imp} \sim 1/(\omega \ln^2(\omega/T_{\rm SFL}))$

NFL Phase

general overscreened $SU(N)_K$ Kondo model

 $S_{\rm imp} = \ln \prod_{n=1}^{Q} \frac{\sin[\pi (N+1-n)/(N+K)]}{\sin[\pi n/(N+K)]}.$

- N=3, K=2, Q=2, SU(3)₂ orbital-(01) Kondo model with overscreened fixed point
- N=2, K=3, Q=1, SU(2)₃ spin-1/2 Kondo model with overscreened fixed point

NFL Phase: Conformal Field Theory (CFT) arguments

Elias et al. arXiv:1908.04362

$$H_{\text{bath}} = a_1 \mathcal{J}_{\text{ch}}^{\dagger} \mathcal{J}_{\text{ch}} + a_2 \mathcal{J}_{\text{sp}}^{\dagger} \mathcal{J}_{\text{sp}} + a_3 \mathcal{J}_{\text{orb}}^{\dagger} \mathcal{J}_{\text{orb}}$$

low-energy fixed point Hamiltonian

$$\tilde{\mathcal{J}}_{\rm sp} = \mathcal{J}_{\rm sp} + S_{\rm imp} \qquad \tilde{\mathcal{J}}_{\rm orb} = \mathcal{J}_{\rm orb} + T_{\rm imp}$$
$$H = H_{\rm bath} + H_{\rm int} = a_1 \tilde{\mathcal{J}}_{\rm ch}^{\dagger} \tilde{\mathcal{J}}_{\rm ch} + a_2 \tilde{\mathcal{J}}_{\rm sp}^{\dagger} \tilde{\mathcal{J}}_{\rm sp} + a_3 \tilde{\mathcal{J}}_{\rm orb}^{\dagger} \tilde{\mathcal{J}}_{\rm orb}$$

Ian Affleck, Nuclear Physics B 336, 517 (1990) Ian Affleck and Andreas Ludwig, Nuclear Physics B 352, 849 (1991) Ian Affleck and Andreas Ludwig, Nuclear Physics B 360, 641 (1991) D.L. Cox and A. Zawadowski, Advances in Physics 47, 599 (1998)

$$U(1)_{ch} \times SU(2)_{sp} \times SU(3)_{orb} \text{ symmetry}$$

$$Q \equiv [q, S, (\lambda_1 \lambda_2)]$$

$$E(Q; \delta q) = \frac{1}{12}(q + \delta q)^2 + \frac{1}{5}\kappa_2(S) + \frac{1}{5}\kappa_3(\lambda_1, \lambda_2),$$

$$\kappa_2(S) = S(S+1),$$

$$\kappa_3(\lambda_1, \lambda_2) = \frac{1}{3}(\lambda_1^2 + \lambda_2^2 + \lambda_1\lambda_2 + 3\lambda_1 + 3\lambda_2),$$

Single-Fusion

Double-Fusion

free Fermion spectrum	effective impurity multiplet	NRG fixed-point spectrum	dual representation of effective impurity multiplet	CFT boundary operators Ô		
$Q \equiv [q, S, (\lambda_1 \lambda_2)]$	$\otimes Q_{\rm imp}^{\rm eff} \rightarrow$	$Q' \equiv [q', S', (\lambda'_1 \lambda'_2)]$	$\otimes \ \bar{Q}_{\mathrm{imp}}^{\mathrm{eff}} \to Q$	$Q^{\prime\prime} \equiv [q^{\prime\prime}, S^{\prime\prime}, (\lambda_1^{\prime\prime}\lambda_2^{\prime\prime})]$		
E(Q;0)		$E(Q';\delta q)$		$\Delta = E(Q''; \delta q)$		

Scheme I, SU(2)₃ fusion in spin sector with $Q_{imp}^{eff} = [+1, \frac{1}{2}, (00)]$ $\bar{Q}_{imp}^{eff} = [-1, \frac{1}{2}, (00)]$ Scheme II, SU(3)₂ fusion in orbital sector with $Q_{imp}^{eff} = [0, 0, (01)]$ $\bar{Q}_{imp}^{eff} = [0, 0, (10)]$

CFT results of NFL phase: SU(2)₃ fusion in spin sector

	free	e fermio	ns		sin	gle	e fusion,	wit	h $Q_{\rm imp}^{\rm eff}$	$= [+1, \frac{1}{2}, (00)]$	NRG	double fusion,		fusion,	with $\bar{Q}_{imp}^{eff} = [-1, \frac{1}{2}, (0$										
q	S	$(\lambda_1\lambda_2)$	d	E	q'	S'	$(\lambda_1'\lambda_2')$	d'	E'	$\delta E'$	$E_{\rm NRG}$	q''	S''	$(\lambda_1''\lambda_2'')$	Δ	Ô	SI								
	0 (00) 1 0	0	+ 1	1	(00)	2	$7+5\delta q$	0	0	0	0	(00)	0	1	a										
0	0	(00)	1	0	+1	$\overline{2}$	(00)	2	30	0	0	0	1	(00)	$\frac{2}{5} (= \Delta_{\rm sp})$	$\Phi_{ m sp}$									
					+2	0	(10)	3	$\frac{9+5\delta q}{15}$	$\frac{11+5\delta q}{30}$ (0.374)	0.369	+1	$\frac{1}{2}$	(10)	$\frac{3+\delta q}{6}$										
+1	$\frac{1}{2}$	(10)	6	$\frac{1}{2}$	+2	1	(10)	9	$\frac{3+\delta q}{2}$	$\frac{23+5\delta q}{22}$ (0.774)	0.809	+1	$\frac{1}{2}$	(10)	$\frac{3+\delta q}{6}$										
							(/		3	30 (0111-)		+1	$\frac{3}{2}$	(10)	$\frac{33+5\delta q}{30}$										
					0	0	(01)	3	$\frac{4}{15}$	$\frac{1-5\delta q}{30}$ (0.026)	0.026	-1	$\frac{1}{2}$	(01)	$\frac{3-\delta q}{6}$										
-1	$\frac{1}{2}$	(01)	6	$\frac{1}{2}$	0	1	(01)	9	$\frac{2}{2}$	$\frac{13-5\delta q}{22}$ (0.426)	0.422	-1	$\frac{1}{2}$	(01)	$\frac{3-\delta q}{6}$		E								
						Ľ	Ľ							3	30 (01-0)		-1	$\frac{3}{2}$	(01)	$\frac{33-5\delta q}{30}$					
	0 1 (11)			$+1 \frac{1}{2}$	$\frac{1}{2}$	(11)	16	$\frac{5+\delta q}{2}$	$\frac{3}{2}$ (0.600)	0.600	0	0	(11)	$\frac{3}{5} (= \Delta_{\rm orb})$	$\Phi_{ m orb}$										
0		(11)	24	1	1		2			6	5 (0000)		0	1	(11)	1 (= $\Delta_{\text{sp-orb}}$)	$\Phi_{\rm sp-orb}$								
					+1	$\frac{3}{2}$	(11)	32	$\frac{43+5\delta q}{30}$	$\frac{6}{5}$ (1.200)	1.223	0	1	(11)	1										
+2	+2 0 (20) 6	1	+3	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	(20)	12	$\frac{47+15\delta q}{20}$	$\frac{4+\delta q}{2}$ (1.348)	1.432	+2	0	(20)	$\frac{3+\delta q}{3}$		
						2			30	3 (11010)		+2	1	(20)	$\frac{21+5\delta q}{15}$										
-2	0	(02)	6	6	6	6	6	6	6	6	1	-1	$\frac{1}{2}$	(02)	12	$27-5\delta q$	$\frac{2-\delta q}{2-\delta q}$ (0.652)	0.655	-2	0	(02)	$\frac{3-\delta q}{3}$			
		()				2	()		30	3 (0.00-)		-2	1	(02)	$\frac{21-5\delta q}{15}$										
					+3	$\frac{1}{2}$	(01)	6	$\frac{7+3\delta q}{2}$	$\frac{14+5\delta q}{12}$ (0.948)	0.954	+2	0	(01)	$\frac{9+5\delta q}{15}$										
$+2\ 1\ (01)$	9	1	1.0	2	(0-)		6	15 (01010)		+2	1	(01)	$\frac{3+\delta q}{3}$												
				+3	$\frac{3}{2}$	(01)	12	$\tfrac{53+15\delta q}{30}$	$\frac{23+5\delta q}{15}$ (1.548)	1.599	+2	1	(01)	$\frac{3+\delta q}{3}$											
					-1	1	(10)	6	$\frac{3-\delta q}{\delta q}$	$\frac{4-5\delta q}{5}$ (0.252)	0.248	-2	0	(10)	$\frac{9-5\delta q}{15}$										
-2	1	(10)	9	1	-	2	()		6	15 (0.202)	0.210	-2	1	(10)	$\frac{3-\delta q}{3}$										
				-1	$\frac{3}{2}$	(10)	12	$\frac{33-5\delta q}{30}$	$\frac{13-5\delta q}{15}$ (0.852)	0.844	-2	1	(10)	$\frac{3-\delta q}{3}$											

J0=0.3, I0=-0.01

 $E_{\rm NRG}$ have been shifted and rescaled such that the ground state is zero and the values of $E_{\rm NRG}$ and $\delta E'$ match for the multiplet $[+1, \frac{1}{2}, (11)]$ δq is then determined by matching $E_{\rm NRG}$ and $\delta E'$ for the multiplet [0, 0, (01)] $\delta q = 0.0433$ $E([0, 0, (01)]) - E([+1, \frac{1}{2}, (00)]) = \frac{1 - 5\delta q}{30}$

- $\begin{array}{l} \text{power-laws from CFT} \\ \chi^{\mathrm{imp}}_{\mathrm{sp}} & \sim \omega^{2\Delta_{\mathrm{sp}}-1} &= \omega^{-1/5}, \\ \chi^{\mathrm{imp}}_{\mathrm{orb}} & \sim \omega^{2\Delta_{\mathrm{orb}}-1} &= \omega^{1/5}, \\ \chi^{\mathrm{imp}}_{\mathrm{sp-orb}} \sim \omega^{2\Delta_{\mathrm{sp-orb}}-1} &= \omega^{1}. \end{array}$
- specific heat coefficient from CFT

 $\gamma(T) \propto T^{2\Delta_{\rm sp}-1} = T^{-1/5}$

Olivier Parcollet *et al.* PRB 58,3794 (1998)

CFT results of NFL phase: SU(3)₂ fusion in orbital sector

f	free	fermio	ons			s	ingle fu	sion	, with Q	$_{\rm imp}^{\rm eff} = [0, 0, (01)]$		NRG	dou	ble	fusion,	with $\bar{Q}_{imp}^{eff} = [0]$	[0, 0, (10)]						
q	S	$(\lambda_1\lambda_2)$	d	E	q'	S'	$(\lambda_1'\lambda_2')$	d'	E'	$\delta E'$		$E_{\rm NRG}$	$q^{\prime\prime}$	$S^{\prime\prime}$	$(\lambda_1''\lambda_2'')$	Δ	Ô						
0	0	(00)	1	0	0	0	(01)	3	$\frac{4}{15}$	$\frac{1-5\delta q}{30}$ (0.026)		0.026	0	0	(00) (11)	$\frac{0}{\frac{3}{5}} (= \Delta_{\rm orb})$	1 $\Phi_{ m orb}$						
					+1	$\frac{1}{2}$	(00)	2	$\frac{7+5\delta q}{30}$	0		0	+1	$\frac{1}{2}$	(10)	$\frac{3+\delta q}{6}$							
+1	$\frac{1}{2}$	(10)	6	$\frac{1}{2}$	+1	$\frac{1}{2}$	(11)	16	$\frac{5+\delta q}{6}$	$\frac{3}{5}$ (0.600)		0.600	+1 +1	$\frac{1}{2}$ $\frac{1}{2}$	(10) (02)	$\frac{\frac{3+\delta q}{6}}{\frac{27+5\delta q}{22}}$							
-1	1	(01)	6	1	-1	$\frac{1}{2}$	(10)	6	$\frac{3-\delta q}{6}$	$\frac{4-5\delta q}{15}$ (0.252)		0.248	-1 -1	$\frac{1}{2}$	(01)	$\frac{3-\delta q}{6}$ $\frac{27-5\delta q}{27-5\delta q}$							
	2	~ /		2	-1	$\frac{1}{2}$	(02)	12	$\frac{27-5\delta q}{30}$	$\frac{2-\delta q}{3}$ (0.652)		0.655	-1	$\frac{2}{\frac{1}{2}}$	(01)	$\frac{30}{\frac{3-\delta q}{6}}$							
	0 1 (11)				0	1	(01)	9	2	$\frac{13-5\delta q}{22}$ (0.426)		0.422	0	1	(00)	$\frac{2}{5} (= \Delta_{\rm sp})$	$\Phi_{\rm sp}$						
0		(11)	24	1			()		3	30 (0.120)	/		0	1	(11)	1 (= $\Delta_{\text{sp-orb}}$)	$\Phi_{\rm sp-orb}$						
					0	1	(20)	18	$\frac{16}{15}$	$\frac{5-\delta q}{6}$ (0.826)		0.825	0	1	(11)	1							
+2	0	(20)	6	1	+2	0	(10)	3	$\frac{9+5\delta q}{15}$	$\frac{11+5\delta q}{30}$ (0.374))	0.369	+2	0	(01)	$\frac{9+5\delta q}{15}$							
													+2	0	(20)	$\frac{3+6q}{3}$							
-2	0	(02)	6	1	$ _{-2}$	0	(11)	8	$14-5\delta q$	$\frac{7-5\delta q}{2}$ (0.678)		0.673	-2	0	(10)	$\frac{9-5\delta q}{15}$							
		(02)	0		_		(11)	0	15	10 (0.010)		0.010	-2	0	(02)	$\frac{3-\delta q}{3}$							
					1.9	1	(10)	0	$3+\delta q$	$23+5\delta q$ (0.774)		0.800	+2	1	(01)	$\frac{3+\delta q}{3}$							
+2	1	(01)	9	1	+2	1	(10)	9	3	$\frac{-1}{30}$ (0.774)	/	0.809	+2	1	(20)	$\frac{21+5\delta q}{15}$							
					+2	1	(02)	18	$\frac{21+5\delta q}{15}$	$\frac{7+\delta q}{6}$ (1.174)		1.180	+2	1	(01)	$\frac{3+\delta q}{3}$							
					-2	1	(00)	3	$\frac{11-5\delta q}{15}$	$\frac{1-\delta q}{2}$ (0.478)		0.470	-2	1	(10)	$\frac{3-\delta q}{3}$							
-2	1	(10)	9	1	_2	1	(11)	24	$4 - \delta q$	$\frac{11-5\delta q}{11-5\delta q}$ (1.078)		1 090	-2	1	(10)	$\frac{3-\delta q}{3}$							
											-2	1	(11)	24	3	$\frac{10}{10}$ (1.078)		1.090	-2	1	(02)	$\frac{21-5\delta q}{15}$	

J0=0.3, I0=-0.01

An effective SU(2)₃ spin Kondo model and an effective SU(3)₂ orbital Kondo model with overscreened fixed points are equivalent description of this NFL fixed point

Picture of NFL Phase: alternating overscreenings in spin and orbital sector

 $[0, 1, (01)] \otimes [+1, \frac{1}{2}, (10)] \rightarrow [+1, \frac{3}{2}, (00)] \oplus [+1, \frac{1}{2}, (00)]$ contrast to FL, $[+1, \frac{1}{2}, (00)]$ has lower energy due to strong FM spin-orbital Kondo coupling I_0

A: bind one hole $[+1, \frac{1}{2}, (00)] \otimes [-1, \frac{1}{2}, (01)] \rightarrow [0, 0, (01)]$ B: bind one electron $[0, 0, (01)] \otimes [+1, \frac{1}{2}, (10)] \rightarrow [+1, \frac{1}{2}, (00)]$

along the Wilson chain with odd-length

Phase transition: Suppression of FL scale and Quantum Critical Points (QCPs)

 $T_{\rm FL} = T_{\rm sp}$

 $T_{\rm FL/SFL} \propto |J_0 - J_0^c|^{1.8}, |I_0 - I_0^c|^{1.8}, T_{\rm FL/NFL} \propto |J_0 - J_0^c|^1, |I_0 - I_0^c|^1.$

T_{FL} can become arbitrarily small close to these two QCPs

FL to SFL transition, crossover regime SFL' at intermediate energies

FL to NFL transition, crossover regime NFL' at intermediate energies

J₀=0.3

"level-crossing" picture

Multiplets	$E_{NFL'}$	$E_{ m FL}$	$E_{\rm NFL}$
$q \ S (\lambda_1 \lambda_2) \ d$	$@I_0 = -0.00609896199692$	$@I_0 = -0.006098$	$@I_0 = -0.006099$
$+1 \frac{1}{2} (00) 2$	-0.717930		$-0.729529 \ (= E_g)$
0 0 (01) 3	-0.668562		-0.680530
$-2 \ 0 \ (00) \ 1$	-0.550738	$-0.551028 \ (= E_g)$	
$-1 \frac{1}{2}$ (10) 6	-0.282883	$-0.275517 \ (\simeq E_g + \epsilon_e)$	
$-1 \frac{1}{2}$ (10) 6	-0.275324		-0.295054
$+2 \ 0 \ (10) \ 3$	-0.0880684		-0.100011
$0 \ 1 \ (01) \ 9$	0	$0 \ (\simeq E_g + 2\epsilon_e)$	
0 0 (20) 6	0.000037	$0 \ (\simeq E_g + 2\epsilon_e)$	
0 1 (01) 9	0.011703		0
$-2\ 1\ (00)\ 3$	0.102149		0.089692
$+1 \frac{3}{2} (00) 4$	0.275407	$0.275518 \ (\simeq E_g + 3\epsilon_e)$	
$+1 \frac{1}{2}$ (11) 16	0.275410	$0.275518 \ (\simeq E_g + 3\epsilon_e)$	
$+1 \frac{1}{2}$ (11) 16	0.313029		0.300831
$-1 \frac{1}{2}$ (02) 12	0.416507		0.404921
$-2 \ 0 \ (11) \ 8$	0.451411		0.439442
$+2\ 1\ (10)\ 9$	0.550783	$0.551033 \ (\simeq E_g + 4\epsilon_e)$	
+2 0 (02) 6	0.550791	$0.551033 \ (\simeq E_g + 4\epsilon_e)$	

FL and NFL subspaces are orthogonal, both contribute to dynamical and thermodynamical properties, the effective impurity degrees of freedom in *NFL*' is the *sum* of those two sectors

$$S_{\rm imp}^{NFL'} = \ln(e^{S_{\rm imp}^{\rm FL}} + e^{S_{\rm imp}^{\rm NFL}}) = \ln(1 + \frac{1 + \sqrt{5}}{2})$$

not $\ln 1 + \ln \frac{1 + \sqrt{5}}{2}$

SFL to NFL transition

 $[+1, \frac{1}{2}, (00)] \otimes [-1, \frac{1}{2}, (01)] \rightarrow [0, 0, (01)]$

Connection to the QCP in $BaFe_2(As_{1-x}P_x)_2$

suggests approaching to the NFL QCP

Connection to experiments: Static impurity susceptibilities as functions of temperature T

Summary

- We calculated a global phase diagram of the 3soK model relevant for Hund metal by NRG method, two new QCPs are identified by tuning spin and spin-orbital couplings into the ferromagnetic regimes
- *T_{FL}* follows power-laws to approach zero energy close the QCPs, this allows us to follow the suppression of the coherence scale in Hund metals down to zero energy
- We find quantum phase transitions to a SFL and a novel NFL phase. The NFL phase shows interesting alternating overscreenings in spin and orbital sectors with universal power-laws in dynamical susceptibilities, and we understand it by powerful CFT arguments. The NFL phase contains the essential ingredients to understand the incoherent behavior seen above T_{FL}
- The NFL QCP presented in this work can be used to understand the mass divergence observed in iron pnictides doped with phosphorus
- The approach presented in this work can be generalized to study the unconventional quantum phase transitions observed in other heavy-fermion systems

Thank You !