
Exponential Thermal Tensor Network Approach
for Quantum Lattice Models

Andreas Weichselbaum
Collaboration

Supported by German Research Foundation (WE4819/3-1)
National Natural Science Foundation of China (NSFC)
Department of Energy (DE-SC0012704)

Bin-Bin Chen, Lei Chen, Ziyu Chen, Dai-Wei Qu, Han Li, Shou-Shu Gong,
Wei Li (Beihang University, Beijing), Jan von Delft (LMU, Munich)

Chen et al., PRX 8, 031082 (2018)
Chen et al., PRB 99, 140404 (2019)
Li et al., PRB 100, 045110 (2019)



Outline

q XTRG (exponential thermal tensor network renormalization group)
} Tensor network representation of thermal states

for quasi-1D systems [in the spirit of 2D-DMRG, yet for finite !]
} Entanglement in thermal states
} Exponential energy scales and logarithmic " grid

q Application: 2D spin-half triangular Heisenberg model
} Two temperature scales !# and !$
} `Roton-like’ excitations in intermediate regime !# ≲ ! ≲ !$

with significant chiral component

q Outlook: Application to DMFT?

q Summary
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Tensor network representation of thermal density matrix
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Entanglement scaling in thermal states in 1D

q Many-body finite size spectrum

finite size level-spacing !" ∼ 1/&
assuming critical systems,
or !" ≫ "gap" Δ
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minimal requirement
for thermal simulations
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entropy of thermal state

More rigorous arguments based on conformal field theory (CFT)
• J. Dubail [J. Phys. A: Math. Theor. 50 (2017) 234001]
• T. Barthel [arXiv:1708.09349 [quant-ph], 2017]

allows for efficient simulations
of thermal states
(comparable to simulation of 
pure states with periodic BC)
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Implication #1: Thermal correlation length

q ! " ≲ $
% log " independent of ) for ) → ∞

➭ finite correlation length (ℓ = /) ∼ " in thermal state

➭ can use finite system with open BC to simulate thermodynamic limit for L ≥ /
➭ can exploit all abelian and non-abelian symmetries in an optimal way

(in the absence of spontaneous symmetry breaking)

➭ a natural generalization of 2D-DMRG to finite temperatures

≡ 567 ⋅ 59 =

e.g. spin-half site: : ∈ {1, 5}
QSpace tensor library - AW, Ann. Phys. (2012)

Chen et al., PRX 8, 031082 (2018)



Implication #2: Exponential energy scales

q Weak bounded growth of block entropy of thermal state ! " ∼
$

%
ln "

} suggests that linear imaginary time evolution schemes are non optimal
e.g. Trotter: " → " + * with * ≪ "

,-./ ≃ ,-.1213/,-.455/

small Trotter error enforces small constant * for any "

q much more natural choice: " → Λ" (Λ > 1)    ⇒ :! ∼ const.
need to make bold steps when increasing " to see a significant change
in physical properties within a critical regime

simple choice: Λ = 2: ,-B. ∗ ,-B.= ,-(EB).

GH *I → GH *I ∗ GH *I = GH 2*I → GH 2*I ∗ GH 2*I = GH 4*I → ⋯

"L = *I2
L

exponential thermal 
tensor renormalization 

group (XTRG)*I 2*I 4*I 8*I 16*I

Chen et al., PRX 8, 031082 (2018)
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Benefits of logarithmic temperature grid

q Simple initialization of ( !"
} can start with exponentially small !" such that ( !" = *+,-. = 1 − !"0
} simply use the MPO of 0 ⇒ up to minor tweak, same MPO for ( !"

q No Trotter error
} simply applicable to longer range Hamiltonians
} no swap gates to deal with Trotter steps 
} including (quasi-) 2D systems

q Maximal speed to reach large 2 with minimal number of truncation steps

q Fine grained temperature resolution?
} Yes! using temperature grids starting from shifted !" → !"24 with 5 ∈ [0,1[

} simply combine interleaved data sets
} trivially parallelizable

Earlier Trotter based schemes, e.g.
Xie et al. (PRB 2012)

Czarnik et al. (PRB 2015)



Numerical cost of XTRG

q Naively

!" !#!$
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q Variationally: *+ ∗ *+ − .*$+
$ → /01
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q Computational gain by using symmetries: & states → &∗ multiplets
e.g. SU(2) spin-half Heisenberg: &∗ ≃ &/4

→ (( &∗ 2)
× ~100



Application: 2D triangular Heisenberg model (S=1/2)

q What is known (theory)

} 120˚ magnetically ordered state at T=0: !" = 0.205(15), [White et al. (2007)]

} paramagnetic at large T

} problem [Kulagin et al (2013) using `sign-blessed’ BDQMC]:

data extrapolates to disordered, i.e., non-magnetic state for + → 0 !?

J

paramagneticincipient 120�o order T

Chen et al.,

PRB 99 (2019)

??



Roton-like excitations in the TLH

Magnon spectra [Zheng (2006)]

series expansion

linear spine wave
theory (LSWT)

LSWT + 1/S corrections

effective `massive’ quasiparticles 
at finite energy with Δ ≃ 0.55

Zheng et al., PRB (2006)
Starykh et al., PRB(R) (2006)

Zheng (2006): We have called this feature a 
“roton” in analogy with similar minima that 
occur in the excitation spectra of super-fluid 
4He and the fractional quantum Hall effect.



Experimental progress

q Ba8CoNb6O24 - close to ideal 2D triangular Heisenberg material!
} Perovskite, first synthesized by Mallinson et al. (Angew. Chem. Int. Ed., 2005)
} equilateral effective spin-1/2 Co2+ triangular layers separated by six nonmagnetic layers.
} [Rawl et al., 2017] A spin-1/2 triangular Heisenberg antiferromagnet in the 2D limit
} [Cui et al., 2018]   Mermin-Wagner physics, (H,T) phase diagram, and candidate

quantum spin-liquid phase in the spin-1/2 triangular antiferromagnet Ba8CoNb6O24
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magnetic contribution to specific heat
(by ref. to non-magnetic compound Ba8ZnTa6O24)

[Rawl (2017)]
J=1.66 K



XTRG data

For sufficiently large system sizes

q consistently, two energy scales
!" ≃ 0.2 and !' ≃ 0.55

q in agreement with experiment
(“thermodynamic limit”)

TPO  . . . tensor product operator method (complimentary to XTRG)
RSBMF . reconstructed Schwinger boson mean field [Mezio et al, NJP (2012)]
Roton . . roton contribution only [Zheng et al, PRB (2006)]
HTSE . . high temperature series expansion (Elstner et al, PRL (1993)]
Pade . . a particular way to deal with the low-T divergence of the partition function in HTSE [Rawl (2017)]

q `roton’ contribution only relevant for ! ≳ !"
q strongly enhanced thermal entropy

for ! ≲ !" due to frustration



Significant chiral component in intermediate regime

q significant chiral component in 
intermediate regime!

q chiral contribution cutoff only at ! ≲ !#

$ = ⟨'( ⋅ ('+×'-)⟩ i

1

23

For comparison:
triangular lattice Hubbard model at T=0
[Szasz et al., condmat (2018)]



Outlook: Application to DMFT?

q Computing Matsubara Greens function

} compute in parallel on fine-grained z-interleaved grid !" = $%2'(" with ) ∈ [0,1[
} interpolate for integral in / 01"
} exact, well-controlled, no sign problem
} wide flexibility in tensor-network setup
} larger temperatures always accessible, also for multi-orbital setups

} Q. comparison of efficiency / lowest accessible T with QMC?

/ 01" = ∫%
3 4$ 56789/ $

with / $ = ;̂ $ ;̂< = =
>
? tr BC DCE FG ;̂ BCEFG ;̂<
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→
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Summary

q XTRG
} an extremely simple, yet efficient and accurate tensor-network approach

to thermal states: ! → ! ∗ ! resulting in $ → 2$
} motivated by entanglement scaling & ∼ (

) log $
} no Trotterization whatsoever ⇨ no Trotter error, no swap gates, etc.
} simply applicable to longer-range interactions (quasi-2D), truncation permitting
} clean exploitation of all symmetries in the Hamiltonian

q Application: Triangular lattice Heisenberg model
} Unified picture to describe crossover from high to low temperature

with 2 crossover scales ./ and .0
} incipient 120˚ order for . ≲ ./
} intermediate temperature regime dominated by roton-like excitations

with significant chiral component

[Chen et al., PRX 2018]
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