General Lab Information

Electrochemical Energy Storage banner image

2021

  • “Vacancy‐Enabled O3 Phase Stabilization for Manganese‐rich Layered Sodium Cathodes.“ Xiao, B.; Wang, Y.; Tan, S.; Song, M.; Li, X.; Zhang, Y.; Lin, F.; Han, K. S.; Omenya, F.; Amine, K. Hu, E.; Li, X.; Li, X.-L.; Chem. Int. Ed. 2021. DOI:10.1002/anie.202016334.
  • “The Role of Electron Localization in Covalency and Electrochemical Properties of Lithium‐Ion Battery Cathode Materials.” Wang, X.; Fan, X.; Yu, X.; Bak, S.; Shadike, Z.; Waluyo, I.; Hunt, A.; Senanayake, S. D.; Li, H.; Chen, L.; Xiao, R.; Hu, E.; Yang, X.-Q.; Funct. Mater. 2021, 31, 2001633. DOI:10.1002/adfm.202001633
  • “Review on organosulfur materials for rechargeable lithium batteries.” Shadike, Z.; Tan, S.; Wang, Q.-C.; Lin, R.; Hu, E.; Qu, D.; Yang, X.-Q.; Materials Horizons 2021, 8, 471-500. DOI:10.1039/D0MH01364A
  • “Identification of LiH and nanocrystalline LiF in the solid–electrolyte interphase of lithium metal anodes.” Shadike, Z.; Lee, H.; Borodin, O.; Cao, X.; Fan, X.; Wang, X.; Lin, R.; Bak, S.-M.; Ghose, S.; Xu, K.; Xiao, J.; Yang, X.-Q.; Hu, E.; Nature Nanotechnology 2021, 1-6. DOI:10.1038/s41565-020-00845-5
  • “Fundamental Linkage Between Structure, Electrochemical Properties, and Chemical Compositions of LiNi1–x–y Mn x Co y O2 Cathode Materials. “ Hu, J.; Wang, Q.; Wu, B.; Tan, S.; Shadike, Z.; Bi, Y.; Whittingham, M. S.; Xiao, J.; Yang, X.-Q.; Hu, E.; ACS Applied Materials & Interfaces 2021, 13, 2622. DOI:10.1021/acsami.0c18942
  • “Mesoscale-architecture-based crack evolution dictating cycling stability of advanced lithium ion batteries. “ Hu, J.; Li, L.; Hu, E.; Chae, S.; Jia, H.; Liu, T.; Wu, B.; Bi, Y.; Amine, K.; Wang, C.; Xiao, J.; Nano Energy 2021, 79, 105420. DOI:10.1016/j.nanoen.2020.105420
  • “Oxygen-redox reactions in LiCoO2 cathode without O–O bonding during charge-discharge. “ Hu, E.; Li, Q.; Wang, X.; Meng, F.; Liu, J.; Zhang, J.-N.; Page, K.; Xu, W.; Gu, L.; Xiao, R.; Yu, X.; Yang, W.; Yang, X.-Q.; Joule 2021, 5, 1-6. DOI:10.1016/j.joule.2021.01.006
  • “Replacement Reaction Enabled Interdigitated Metal/Solid Electrolyte Architecture for Battery Cycling at 20 mA cm–2 and 20 mAh cm–2. “ Cai, Z.; Ou, Y.; Zhang, B.; Wang, J.; Fu, L.; Wan, M.; Li, G.; Wang, W.; Wang, L.; Jiang, J.; Sun, X.; Cui, Y. A; Am. Chem. Soc. 2021. DOI:10.1021/jacs.0c11753
  • “New High-Performance Pb-Based Nanocomposite Anode Enabled by Wide‐Range Pb Redox and Zintl Phase Transition.” Han, J.; Park, J.; Bak, S. M.; Son, S. B.; Gim, J.; Villa, C.; Hu, X.; Dravid, V. P.; Su, C. C.; Kim, Y.; Funct. Mater. 2021, 31, 2005362. DOI:10.1002/adfm.202005362
  • “. Anionic Redox Reaction Triggered by trivalent Al3+ in P3-Na 65 Mn0. 5 Al0. 5 O2” Shi, D.-R.; Wang, T.; Shadike, Z.; Ma, L.; Yang, X.-Q.; Chu, S.-F.; Zhao, Z.; Peng, Z.; Fu, Z.; Chem. Commun. 2021. DOI:10.1039/D1CC00373A
  • “Origin of anomalous high-rate Na-ion electrochemistry in layered bismuth telluride anodes. “ Cui, J.; Zheng, H.; Zhang, Z.; Hwang, S.; Yang, X.-Q.; He, K.; Matter 2021. DOI:10.1016/j.matt.2021.01.005

2020

  • “Local structure adaptability through multi cations for oxygen redox accommodation in Li-Rich layered oxides.” Zhao, E.; Zhang, M.; Wang, X.; Hu, E.; Liu, J.; Yu, X.; Olguin, M.; Wynn, T. A.; Meng, Y. S.; Page, K.; Energy Storage Materials 2020, 24, 384-393. DOI:10.1016/j.ensm.2019.07.032
  • “Atomically Dispersed Nickel (I) on an Alloy‐Encapsulated Nitrogen‐Doped Carbon Nanotube Array for High-Performance Electrochemical CO2 Reduction Reaction.” Zhang, T.; Han, X.; Yang, H.; Han, A.; Hu, E.; Li, Y.; Yang, X. q.; Wang, L.; Liu, J.; Liu, B.; Chem. 2020, 132, 12153-12159. DOI:10.1002/anie.202002984
  • “Depth-dependent valence stratification driven by oxygen redox in lithium-rich layered oxide.“ Zhang, J.; Wang, Q.; Li, S.; Jiang, Z.; Tan, S.; Wang, X.; Zhang, K.; Yuan, Q.; Lee, S.-J.; Titus, C. J.; Commun. 2020, 11, 1-8. DOI:10.1038/s41467-020-20198-w
  • “Toward Higher Voltage Solid-State Batteries by Metastability and Kinetic Stability Design.’ Ye, L.; Fitzhugh, W.; Gil-González, E.; Wang, Y.; Su, Y.; Su, H.; Qiao, T.; Ma, L.; Zhou, H.; Hu, E.; Advanced Energy Materials 2020, 10, 2001569. DOI:10.1002/aenm.202001569
  • “Pair distribution function analysis: Fundamentals and application to battery materials.” Wang, X.; Tan, S.; Yang, X.-Q.; Hu, E.; Chinese Physics B 2020, 29, 028802.
    DOI:10.1088/1674-1056/ab6656
  • “Controlling Surface Phase Transition and Chemical Reactivity of O3-Layered Metal Oxide Cathodes for High-Performance Na-Ion Batteries. “ Song, J.; Wang, K.; Zheng, J.; Engelhard, M. H.; Xiao, B.; Hu, E.; Zhu, Z.; Wang, C.; Sui, M.; Lin, Y.; ACS Energy Letters 2020, 5, 1718-1725. DOI:10.1021/acsenergylett.0c00700
  • “Synthesis and properties of stable sub-2-nm-thick aluminum nanosheets: Oxygen passivation and two-photon luminescence.” Luo, L.; Li, Y.; Sun, X.; Li, J.; Hu, E.; Liu, Y.; Tian, Y.; Yang, X.-Q.; Li, Y.; Lin, W.-F.; Chem 2020, 6, 448-459. DOI:10.1016/j.chempr.2019.11.004
  • “A chemically stabilized sulfur cathode for lean electrolyte lithium sulfur batteries.” Luo, C.; Hu, E.; Gaskell, K. J.; Fan, X.; Gao, T.; Cui, C.; Ghose, S.; Yang, X.-Q.; Wang, C.; Proceedings of the National Academy of Sciences 2020, 117, 14712-14720. DOI:10.1073/pnas.2006301117
  • “Prelithiated Li-Enriched Gradient Interphase toward Practical High-Energy NMC–Silicon Full Cell. “ Liu, X.; Liu, T.; Wang, R.; Cai, Z.; Wang, W.; Yuan, Y.; Shahbazian-Yassar, R.; Li, X.; Wang, S.; Hu, E.; ACS Energy Letters 2020, 6, 320-328. DOI:10.1021/acsenergylett.0c02487
  • “A Redox‐Active 2D Metal–Organic Framework for Efficient Lithium Storage with Extraordinary High Capacity. “ Jiang, Q.; Xiong, P.; Liu, J.; Xie, Z.; Wang, Q.; Yang, X. Q.; Hu, E.; Cao, Y.; Sun, J.; Xu, Y.; Chem. 2020, 132, 5311-5315. DOI:10.1002/anie.201914395
  • “Structure and Interface Design Enable Stable Li-Rich Cathode. “ Cui, C.; Fan, X.; Zhou, X.; Chen, J.; Wang, Q.; Ma, L.; Yang, C.; Hu, E.; Yang, X.-Q.; Wang, C. ; Am. Chem. Soc. 2020, 142, 8918-8927. DOI:10.1021/jacs.0c02302
  • “Sodium storage property and mechanism of NaCr1/4 Fe1/4 Ni1/4 Ti1/4 O2 cathode at various cut-off voltages.” Cao, M.-H.; Shadike, Z.; Bak, S.-M.; Wang, T.; Hu, E.; Ehrlich, S.; Zhou, Y.-N.; Yang, X.-Q.; Fu, Z.-W.; Energy Storage Materials 2020, 24, 417-425. DOI:10.1016/j.ensm.2019.07.022
  • “Solvation Structure Design for Aqueous Zn Metal Batteries.“ Cao, L.; Li, D.; Hu, E.; Xu, J.; Deng, T.; Ma, L.; Wang, Y.; Yang, X.-Q.; Wang, C.; Am. Chem. Soc. 2020. DOI:10.1021/jacs.0c09794
  • “Reversible planar gliding and microcracking in a single-crystalline Ni-rich cathode. “ Bi, Y.; Tao, J.; Wu, Y.; Li, L.; Xu, Y.; Hu, E.; Wu, B.; Hu, J.; Wang, C.; Zhang, J.-G.; Science 2020, 370, 1313-1317. DOI:10.1126/science.abc3167
  • “Multimodal Analysis of Reaction Pathways of Cathode Materials for Lithium Ion Batteries.” Hwang, S.; Ji, X.; Bak, S.-M.; Bai, J.; Sun, K.; Fan, X.; Gan, H.; Wang, C.; Su, D.; Microanal. 2020, 26, 906-908. DOI:10.1017/S143192762001627X
  • “Co‐and Ni‐Free P2/O3 Biphasic Lithium Stabilized Layered Oxide for Sodium‐Ion Batteries and its Cycling Behavior. “ Yang, L.; del Amo, J. M. L.; Shadike, Z.; Bak, S. M.; Bonilla, F.; Galceran, M.; Nayak, P. K.; Buchheim, J. R.; Yang, X. Q.; Rojo, T. A.; Funct. Mater. 2020, 30, 2003364. DOI:10.1002/adfm.202003364
  • “Structural Stabilization of P2‐type Sodium Iron Manganese Oxides by Electrochemically Inactive Mg Substitution: Insights of Redox Behavior and Voltage Decay.” Yang, J.; Maughan, A. E.; Teeter, G.; Tremolet de Villers, B. J.; Bak, S. M.; Han, S. D.; ChemSusChem 2020, 13, 5972-5982. DOI:10.1002/cssc.202001963
  • “Tailoring Solution-Processable Li Argyrodites Li6+x P1–x MxS5I (M=Ge, Sn) and Their Microstructural Evolution Revealed by Cryo-TEM for All-Solid-State Batteries.” Song, Y. B.; Kim, D. H.; Kwak, H.; Han, D.; Kang, S.; Lee, J. H.; Bak, S.-M.; Nam, K.-W.; Lee, H.-W.; Jung, Y. S.; Nano Lett. 2020, 20, 4337-4345. DOI:10.1021/acs.nanolett.0c01028
  • “Biomimetic composite architecture achieves ultrahigh rate capability and cycling life of sodium ion battery cathodes.” Shin, K. H.; Park, S. K.; Nakhanivej, P.; Wang, Y.; Liu, P.; Bak, S.-M.; Choi, M. S.; Mitlin, D.; Park, H. S.; Applied Physics Reviews 2020, 7, 041410. DOI:10.1063/5.0020805
  • “Reaction heterogeneity in practical high-energy lithium– sulfur pouch cells.” Shi, L.; Bak, S.-M.; Shadike, Z.; Wang, C.; Niu, C.; Northrup, P.; Lee, H.; Baranovskiy, A. Y.; Anderson, C. S.; Qin, J.; Energy Environ. Sci. 2020, 13, 3620-3632. DOI:10.1039/D0EE02088E
  • “Mixed Ionic–Electronic Conductor of Perovskite LixLayMO3−δ toward Carbon‐Free Cathode for Reversible Lithium–Air Batteries.” Ma, S. B.; Kwon, H. J.; Kim, M.; Bak, S. M.; Lee, H.; Ehrlich, S. N.; Cho, J. J.; Im, D.; Seo, D. H.; Advanced Energy Materials 2020, 10, 2001767. DOI:10.1002/aenm.202001767
  • “Understanding the Mechanism of High Capacitance in Nickel Hexaaminobenzene-Based Conductive Metal–Organic Frameworks in Aqueous Electrolytes.” Lukatskaya, M. R.; Feng, D.; Bak, S.-M.; To, J. W. F.; Yang, X.-Q.; Cui, Y.; Feldblyum, J. I.; Bao, Z.; ACS nano 2020, 14, 15919-15925. DOI:10.1021/acsnano.0c07292
  • “Synchrotron Operando Depth Profiling Studies of State-of-Charge Gradients in Thick Li (Ni8 Mn0. 1 Co0. 1) O2 Cathode Films.” Li, Z.; Yin, L.; Mattei, G. S.; Cosby, M. R.; Lee, B.-S.; Wu, Z.; Bak, S.-M.; Chapman, K. W.; Yang, X.-Q.; Liu, P.; Chem. Mater. 2020, 32, 6358-6364. DOI:10.1021/acs.chemmater.0c00983
  • “Revealing Reaction Pathways of Collective Substituted Iron Fluoride Electrode for Lithium Ion Batteries.” Hwang, S.; Ji, X.; Bak, S.-M.; Sun, K.; Bai, J.; Fan, X.; Gan, H.; Wang, C.; Su, D.; ACS nano 2020, 14, 10276-10283. DOI:10.1021/acsnano.0c03714
  • “Elucidation of the Jahn-Teller effect in a pair of sodium isomer.” Wang, P.-F.; Jin, T.; Zhang, J.; Wang, Q.-C.; Ji, X.; Cui, C.; Piao, N.; Liu, S.; Xu, J.; Yang, X.-Q.; Nano Energy 2020, 77, 105167. DOI:10.1016/j.nanoen.2020.105167
  • “Petaloid-shaped ZnO coated carbon felt as a controllable host to construct hierarchical Li composite anode.” Yue, X.-Y.; Bao, J.; Yang, S.-Y.; Luo, R.-J.; Wang, Q.-C.; Wu, X.-J.; Shadike, Z.; Yang, X.-Q.; Zhou, Y.-N.; Nano Energy 2020, 71, 104614. DOI:10.1016/j.nanoen.2020.104614
  • “High-rate cathode CrSSe based on anion reactions for lithium-ion batteries.” Yang, S.-Y.; Shi, D.-R.; Wang, T.; Yue, X.-Y.; Zheng, L.; Zhang, Q.-H.; Gu, L.; Yang, X.-Q.; Shadike, Z.; Li, H.; Journal of Materials Chemistry A 2020, 8, 25739-25745. DOI:10.1039/D0TA08012H
  • “Both cationic and anionic redox chemistry in a P2-type sodium layered oxide.” Wang, P.-F.; Xiao, Y.; Piao, N.; Wang, Q.-C.; Ji, X.; Jin, T.; Guo, Y.-J.; Liu, S.; Deng, T.; Cui, C.; Nano Energy 2020, 69, 104474. DOI:10.1016/j.nanoen.2020.104474
  • “High performance lithium-ion and lithium–sulfur batteries using prelithiated phosphorus/carbon composite anode.” Wang, G.; Li, F.; Liu, D.; Zheng, D.; Abeggien, C. J.; Luo, Y.; Yang, X.-Q.; Ding, T.; Qu, D.; Energy Storage Materials 2020, 24, 147-152. DOI:10.1016/j.ensm.2019.08.025
  • “Designing Advanced In Situ Electrode/Electrolyte Interphases for Wide Temperature Operation of 4.5 V Li|| LiCoO2” Ren, X.; Zhang, X.; Shadike, Z.; Zou, L.; Jia, H.; Cao, X.; Engelhard, M. H.; Matthews, B. E.; Wang, C.; Arey, B. W.; Adv. Mater. 2020, 32, 2004898. DOI:10.1002/adma.202004898

2019

  • “Trace doping of multiple elements enables stable battery cycling of LiCoO2 at 4.6 V.” Zhang, J.-N.; Li, Q.; Ouyang, C.; Yu, X.; Ge, M.; Huang, X.; Hu, E.; Ma, C.; Li, S.; Xiao, R.; Nature Energy 2019, 4, 594-603. DOI:10.1038/s41560-019-0409-z
  • “Activating layered double hydroxide with multivacancies by memory effect for energy-efficient hydrogen production at neutral pH.” Yuan, Z.; Bak, S.-M.; Li, P.; Jia, Y.; Zheng, L.; Zhou, Y.; Bai, L.; Hu, E.; Yang, X.-Q.; Cai, Z.; ACS Energy Letters 2019, 4, 1412-1418. DOI:10.1021/acsenergylett.9b00867
  • “Understanding the low-voltage hysteresis of anionic redox in Na2Mn3O7.” Song, B.; Tang, M.; Hu, E.; Borkiewicz, O. J.; Wiaderek, K. M.; Zhang, Y.; Phillip, N. D.; Liu, X.; Shadike, Z.; Li, C.; Mater. 2019, 31, 3756-3765. DOI:10.1021/acs.chemmater.9b00772
  • “A novel P3-type Na2/3 Mg1/3 Mn2/3 O2 as high capacity sodium-ion cathode using reversible oxygen redox.” Song, B.; Hu, E.; Liu, J.; Zhang, Y.; Yang, X.-Q.; Nanda, J.; Huq, A.; Page, K.; Journal of Materials Chemistry A 2019, 7, 1491-1498. DOI:10.1039/C8TA09422E
  • “Synthesis and Characterization of a Molecularly Designed High‐Performance Organodisulfide as Cathode Material for Lithium Batteries.” Shadike, Z.; Lee, H. S.; Tian, C.; Sun, K.; Song, L.; Hu, E.; Waluyo, I.; Hunt, A.; Ghose, S.; Hu, Y.; Advanced Energy Materials 2019, 9, 1900705. DOI:10.1002/aenm.201900705
  • “Anionic redox reaction-induced high-capacity and low-strain cathode with suppressed phase transition.” Rong, X.; Hu, E.; Lu, Y.; Meng, F.; Zhao, C.; Wang, X.; Zhang, Q.; Yu, X.; Gu, L.; Hu, Y.-S.; Joule 2019, 3, 503-517. DOI:10.1016/j.joule.2018.10.022
  • “High-voltage charging-induced strain, heterogeneity, and micro-cracks in secondary particles of a nickel-rich layered cathode material.” Mao, Y.; Wang, X.; Xia, S.; Zhang, K.; Wei, C.; Bak, S.; Shadike, Z.; Liu, X.; Yang, Y.; Xu, R.; Funct. Mater. 2019, 29, 1900247. DOI:10.1002/adfm.201900247
  • “Unified view of the local cation-ordered state in inverse spinel oxides.” Liu, J.; Wang, X.; Borkiewicz, O. J.; Hu, E.; Xiao, R.-J.; Chen, L.; Page, K.; Chem. 2019, 58, 14389-14402. DOI:10.1021/acs.inorgchem.9b01685
  • “Anomalous metal segregation in lithium-rich material provides design rules for stable cathode in lithium-ion battery.” Lin, R.; Hu, E.; Liu, M.; Wang, Y.; Cheng, H.; Wu, J.; Zheng, J.-C.; Wu, Q.; Bak, S.; Tong, X.; Commun. 2019, 10, 1-11. DOI:10.1038/s41467-019-09248-0
  • “Surface-to-bulk redox coupling through thermally driven Li redistribution in Li-and Mn-rich layered cathode materials.” Li, S.; Lee, S.-J.; Wang, X.; Yang, W.; Huang, H.; Swetz, D. S.; Doriese, W. B.; O’Neil, G. C.; Ullom, J. N.; Titus, C. J.; Am. Chem. Soc. 2019, 141, 12079-12086. DOI:10.1021/jacs.9b05349
  • “Expanded lithiation of titanium disulfide: Reaction kinetics of multi-step conversion reaction.” Fu, M.; Yao, Z.; Ma, X.; Dong, H.; Sun, K.; Hwang, S.; Hu, E.; Gan, H.; Yao, Y.; Stach, E. A.; Nano Energy 2019, 63, 103882. DOI:10.1016/j.nanoen.2019.103882
  • “Designing in-situ-formed interphases enables highly reversible cobalt-free LiNiO2 cathode for Li-ion and Li-metal batteries.” Deng, T.; Fan, X.; Cao, L.; Chen, J.; Hou, S.; Ji, X.; Chen, L.; Li, S.; Zhou, X.; Hu, E.; Joule 2019, 3, 2550-2564. DOI:10.1016/j.joule.2019.08.004
  • “Achieving High Energy Density through Increasing the Output Voltage: A Highly Reversible 5.3 V Battery.” Chen, L.; Fan, X.; Hu, E.; Ji, X.; Chen, J.; Hou, S.; Deng, T.; Li, J.; Su, D.; Yang, X.; Chem 2019, 5, 896-912. DOI:10.1016/j.chempr.2019.02.003
  • “Rational design of hierarchically open-porous spherical hybrid architectures for lithium-ion batteries.” Yun, S.; Bak, S. M.; Kim, S.; Yeon, J. S.; Kim, M. G.; Yang, X. Q.; Braun, P. V.; Park, H. S.; Advanced Energy Materials 2019, 9, 1 802816. DOI:10.1002/aenm.201802816
  • “Anionic redox reaction in layered NaCr2/3Ti1/3 S2 through electron holes formation and dimerization of S–S. Wang, T.; Ren, G.-X.; Shadike, Z.; Yue, J.-L.; Cao, M.-H.; Zhang, J.-N.; Chen, M.-W.; Yang, X.-Q.; Bak, S.-M.; Northrup, P.; Commun. 2019, 10, 1-12. DOI:10.1038/s41467-019-12310-6
  • “Improving the electrochemical performance and structural stability of the LiNi 8Co0. 15Al0. 05O2 cathode material at high-voltage charging through Ti substitution.” Qiu, Q.-Q.; Shadike, Z.; Wang, Q.-C.; Yue, X.-Y.; Li, X.-L.; Yuan, S.-S.; Fang, F.; Wu, X.-J.; Hunt, A.; Waluyo, I.; ACS applied materials & interfaces 2019, 11, 23213-23221. DOI:10.1021/acsami.9b05100
  • “Reversible Conversion Reactions and Small First Cycle Irreversible Capacity Loss in Metal Sulfide-Based Electrodes Enabled by Solid Electrolytes.” Kim, S.; Choi, J.; Bak, S. M.; Sang, L.; Li, Q.; Patra, A.; Braun, P. V.; Funct. Mater. 2019, 29, 1901719. DOI:10.1002/adfm.201901719
  • “Optimizing PtFe intermetallics for oxygen reduction reaction: from DFT screening to in situ XAFS characterization.” Gong, M.; Zhu, J.; Liu, M.; Liu, P.; Deng, Z.; Shen, T.; Zhao, T.; Lin, R.; Lu, Y.; Yang, S.; Nanoscale 2019, 11, 20301-20306. DOI:10.1039/C9NR04975D
  • “Wettable carbon felt framework for high loading Li-metal composite anode.” Yue, X.-Y.; Li, X.-L.; Wang, W.-W.; Chen, D.; Qiu, Q.-Q.; Wang, Q.-C.; Wu, X.-J.; Fu, Z.-W.; Shadike, Z.; Yang, X.-Q.; Nano Energy 2019, 60, 257-266. DOI:10.1016/j.nanoen.2019.03.057
  • “Pathways for practical high-energy long-cycling lithium metal batteries.” Liu, J.; Bao, Z.; Cui, Y.; Dufek, E. J.; Goodenough, J. B.; Khalifah, P.; Li, Q.; Liaw, B. Y.; Liu, P.; Manthiram, A.; Nature Energy 2019, 4, 180-186. DOI:10.1038/s41560-019-0338-x
  • “Evolution of solid electrolyte interface on TiO2 electrodes in an aqueous Li-ion battery studied using scanning electrochemical microscopy.” Liu, D.; Yu, Q.; Liu, S.; Qian, K.; Wang, S.; Sun, W.; Yang, X.-Q.; Kang, F.; Li, B.; The Journal of Physical Chemistry C 2019, 123, 12797-12806. DOI:10.1021/acs.jpcc.9b01412
  • “Review of recent development of in situ/operando characterization techniques for lithium battery research.” Liu, D.; Shadike, Z.; Lin, R.; Qian, K.; Li, H.; Li, K.; Wang, S.; Yu, Q.; Liu, M.; Ganapathy, S.; Mater. 2019, 31, 1806620. DOI:10.1002/adma.201806620

2018

  • “Suppressing the voltage decay of low-cost P2-type iron-based cathode materials for sodium-ion batteries.” Xu, S.; Wu, J.; Hu, E.; Li, Q.; Zhang, J.; Wang, Y.; Stavitski, E.; Jiang, L.; Rong, X.; Yu, X.; Journal of Materials Chemistry A 2018, 6, 20795-20803. DOI:10.1039/C8TA07933A
  • “Layered double hydroxides with atomic-scale defects for superior electrocatalysis.” Xie, Q.; Cai, Z.; Li, P.; Zhou, D.; Bi, Y.; Xiong, X.; Hu, E.; Li, Y.; Kuang, Y.; Sun, X.; Nano Research 2018, 1-11. DOI:10.1007/s12274-018-2033-9
  • “How water accelerates bivalent ion diffusion at the electrolyte/electrode interface.” Wang, F.; Sun, W.; Shadike, Z.; Hu, E.; Ji, X.; Gao, T.; Yang, X. Q.; Xu, K.; Wang, C.; Chem. Int. Ed. 2018, 57, 11978-11981. DOI:10.1002/anie.201806748
  • “A rechargeable aqueous Zn2+-battery with high power density and a long cycle-life.” Wang, F.; Hu, E.; Sun, W.; Gao, T.; Ji, X.; Fan, X.; Han, F.; Yang, X.-Q.; Xu, K.; Wang, C.; Energy Environ. Sci. 2018, 11, 3168-3175. DOI:10.1039/C8EE01883A
  • “Advanced characterization techniques for sodium-ion battery studies.” Shadike, Z.; Zhao, E.; Zhou, Y. N.; Yu, X.; Yang, Y.; Hu, E.; Bak, S.; Gu, L.; Yang, X. Q.; Advanced Energy Materials 2018, 8, 1702588. DOI:10.1002/aenm.201702588
  • “Structure-induced reversible anionic redox activity in Na layered oxide cathode.” Rong, X.; Liu, J.; Hu, E.; Liu, Y.; Wang, Y.; Wu, J.; Yu, X.; Page, K.; Hu, Y.-S.; Yang, W.; Joule 2018, 2, 125-140. DOI:10.1016/j.joule.2017.10.008
  • “Another strategy, detouring potential decay by fast completion of cation mixing.” Liu, S.; Feng, X.; Wang, X.; Shen, X.; Hu, E.; Xiao, R.; Yu, R.; Yang, H.; Song, N.; Wang, Z.; Advanced Energy Materials 2018, 8, 1703092. DOI:10.1002/aenm.201703092
  • “Large-Scale Synthesis and Comprehensive Structure Study of δ-MnO2.” Liu, J.; Yu, L.; Hu, E.; Guiton, B. S.; Yang, X.-Q.; Page, K.; Chem. 2018, 57, 6873-6882. DOI:10.1021/acs.inorgchem.8b00461
  • “Evolution of redox couples in Li-and Mn-rich cathode materials and mitigation of voltage fade by reducing oxygen release.” Hu, E.; Yu, X.; Lin, R.; Bi, X.; Lu, J.; Bak, S.; Nam, K.-W.; Xin, H. L.; Jaye, C.; Fischer, D. A.; Nature Energy 2018, 3, 690-698. DOI:10.1038/s41560-018-0207-z
  • “Rejuvenating Zinc Batteries.” Hu, E.; Yang, X.-Q.; Mater. 2018, 17, 480. DOI:10.1038/s41563-018-0090-9
  • “Probing the Complexities of Structural Changes in Layered Oxide Cathode Materials for Li-Ion Batteries during Fast Charge–Discharge Cycling and Heating.” Hu, E.; Wang, X.; Yu, X.; Yang, X.-Q.; Chem. Res. 2018, 51, 290. DOI:10.1021/acs.accounts.7b00506
  • “Modification of CO2 reduction activity of nanostructured silver electrocatalysts by surface halide anions.” Hsieh, Y.-C.; Betancourt, L. E.; Senanayake, S. D.; Hu, E.; Zhang, Y.; Xu, W.; Polyansky, D. E.; ACS Applied Energy Materials 2018, 2, 102-109. DOI:10.1021/acsaem.8b01692
  • “High energy-density and reversibility of iron fluoride cathode enabled via an intercalation-extrusion reaction.” Fan, X.; Hu, E.; Ji, X.; Zhu, Y.; Han, F.; Hwang, S.; Liu, J.; Bak, S.; Ma, Z.; Gao, T.; Commun. 2018, 9, 2324. DOI:10.1038/s41467-018-04476-2
  • “Single-Crystalline Ultrathin Co3O4 Nanosheets with Massive Vacancy Defects for Enhanced Electrocatalysis. Cai, Z.; Bi, Y.; Hu, E.; Liu, W.; Dwarica, N.; Tian, Y.; Li, X.; Kuang, Y.; Li, Y.; Yang, X. Q.; Advanced Energy Materials 2018, 8. DOI:10.1002/aenm.201701694
  • “Confinement of ultrasmall cobalt oxide clusters within silicalite-1 crystals for efficient conversion of fructose into methyl lactate.” Yan, Y.; Zhang, Z.; Bak, S.-M.; Yao, S.; Hu, X.; Shadike, Z.; Do-Thanh, C.-L.; Zhang, F.; Chen, H.; Lyu, X.; ACS Catalysis 2018, 9, 1923-1930. DOI:10.1021/acscatal.8b03230
  • “Introducing Fe2+ into nickel–iron layered double hydroxide: local structure modulated water oxidation activity. ” Cai, Z.; Zhou, D.; Wang, M.; Bak, S. M.; Wu, Y.; Wu, Z.; Tian, Y.; Xiong, X.; Li, Y.; Liu, W.; Chem. 2018, 130, 9536-9540. DOI:10.1002/anie.201804881
  • ‘In situ/operando synchrotron-based X-ray techniques for lithium-ion battery research.” Bak, S.-M.; Shadike, Z.; Lin, R.; Yu, X.; Yang, X.-Q.; NPG Asia Materials 2018, 10, 563-580. DOI:10.1038/s41427-018-0056-z
  • “CoO nanofiber decorated nickel foams as lithium dendrite suppressing host skeletons for high energy lithium metal batteries.” Yue, X.-Y.; Wang, W.-W.; Wang, Q.-C.; Meng, J.-K.; Zhang, Z.-Q.; Wu, X.-J.; Yang, X.-Q.; Zhou, Y.-N.; Energy Storage Materials 2018, 14, 335-344. DOI:10.1016/j.ensm.2018.05.017
  • “High-capacity cathode material with high voltage for Li-ion batteries.” Shi, J. L.; Xiao, D. D.; Ge, M.; Yu, X.; Chu, Y.; Huang, X.; Zhang, X. D.; Yin, Y. X.; Yang, X. Q.; Guo, Y. G.; Mater. 2018, 30, 1705575. DOI:10.1002/adma.201705575
  • ‘Stabilizing cathode materials of lithium-ion batteries by controlling interstitial sites on the surface.” Piao, J.-Y.; Sun, Y.-G.; Duan, S.-Y.; Cao, A.-M.; Wang, X.-L.; Xiao, R.-J.; Yu, X.-Q.; Gong, Y.; Gu, L.; Li, Y.; Chem 2018, 4, 1685-1695. DOI:10.1016/j.chempr.2018.04.020

2017

  • “Finding a needle in the haystack: identification of functionally important minority phases in an operating battery.” Zhang, K.; Ren, F.; Wang, X.; Hu, E.; Xu, Y.; Yang, X.-Q.; Li, H.; Chen, L.; Pianetta, P.; Mehta, A.; Nano Lett. 2017, 17, 7782-7788. DOI:10.1021/acs.nanolett.7b03985
  • “Designing air-stable O3-type cathode materials by combined structure modulation for Na-ion batteries.” Yao, H.-R.; Wang, P.-F.; Gong, Y.; Zhang, J.; Yu, X.; Gu, L.; OuYang, C.; Yin, Y.-X.; Hu, E.; Yang, X.-Q.; Am. Chem. Soc. 2017, 139, 8440-8443. DOI:10.1021/jacs.7b05176
  • “In situ Visualization of State-of-Charge Heterogeneity within a LiCoO2 Particle that Evolves upon Cycling at Different Rates. ” Xu, Y.; Hu, E.; Zhang, K.; Wang, X.; Borzenets, V.; Sun, Z.; Pianetta, P.; Yu, X.; Liu, Y.; Yang, X.-Q.; ACS Energy Letters 2017, 2, 1240-1245. DOI:10.1021/acsenergylett.7b00263
  • “Utilizing Co2+/Co3+ Redox Couple in P2-Layered Na 66Co0. 22Mn0. 44Ti0. 34O2 Cathode for Sodium-Ion Batteries.” Wang, Q. C.; Hu, E.; Pan, Y.; Xiao, N.; Hong, F.; Fu, Z. W.; Wu, X. J.; Bak, S. M.; Yang, X. Q.; Zhou, Y. N.; Advanced Science 2017, 4, 1700219. DOI:10.1002/advs.201700219
  • “Honeycomb-ordered Na3Ni5M0. 5BiO6 (M= Ni, Cu, Mg, Zn) as high-voltage layered cathodes for sodium-ion batteries.” Wang, P.-F.; Guo, Y.-J.; Duan, H.; Zuo, T.-T.; Hu, E.; Attenkofer, K.; Li, H.; Zhao, X. S.; Yin, Y.-X.; Yu, X.; ACS Energy Letters 2017, 2, 2715-2722. DOI:10.1021/acsenergylett.7b00930
  • “Correlations between transition-metal chemistry, local structure, and global structure in Li2Ru5Mn0. 5O3 investigated in a wide voltage window.” Lyu, Y.; Hu, E.; Xiao, D.; Wang, Y.; Yu, X.; Xu, G.; Ehrlich, S. N.; Amine, K.; Gu, L.; Yang, X.-Q.; Chem. Mater. 2017, 29, 9053-9065. DOI:10.1021/acs.chemmater.7b02299
  • “In situ neutron diffraction studies of the ion exchange synthesis mechanism of Li2Mg2P3O9N: evidence for a hidden phase transition.” Liu, J.; Whitfield, P. S.; Saccomanno, M. R.; Bo, S.-H.; Hu, E.; Yu, X.; Bai, J.; Grey, C. P.; Yang, X.-Q.; Khalifah, P. G;. Am. Chem. Soc. 2017, 139, 9192-9202. DOI:10.1021/jacs.7b02323
  • “Exploring Lithium Deficiency in Layered Oxide Cathode for Li-Ion Battery.” Cho, S. J.; Uddin, M. J.; Alaboina, P. K.; Han, S. S.; Nandasiri, M. I.; Choi, Y. S.; Hu, E.; Nam, K. W.; Schwarz, A. M.; Nune, S. K;. Advanced Sustainable Systems 2017, 1, 1700026. DOI:10.1002/adsu.201700026
  • “Suppressing the chromium disproportionation reaction in O3-type layered cathode materials for high capacity sodium-ion batteries.” Cao, M.-H.; Wang, Y.; Shadike, Z.; Yue, J.-L.; Hu, E.; Bak, S.-M.; Zhou, Y.-N.; Yang, X.-Q.; Fu, Z.-W.; Journal of Materials Chemistry A 2017, 5, 5442-5448. DOI:10.1039/C6TA10818K
  • “Investigation of the Li–S battery mechanism by real-time monitoring of the changes of sulfur and polysulfide species during the discharge and charge.” Zheng, D.; Liu, D.; Harris, J. B.; Ding, T.; Si, J.; Andrew, S.; Qu, D.; Yang, X.-Q.; Qu, D.; ACS applied materials & interfaces 2017, 9, 4326-4332. DOI:10.1021/acsami.6b08904
  • “A Self-Forming Composite Electrolyte for Solid-State Sodium Battery with Ultralong Cycle Life.” Zhang, Z.; Zhang, Q.; Shi, J.; Chu, Y. S.; Yu, X.; Xu, K.; Ge, M.; Yan, H.; Li, W.; Gu, L.; Advanced Energy Materials 2017, 7, 1601196. DOI:10.1002/aenm.201601196
  • “Antisite occupation induced single anionic redox chemistry and structural stabilization of layered sodium chromium sulfide.” Shadike, Z.; Zhou, Y.-N.; Chen, L.-L.; Wu, Q.; Yue, J.-L.; Zhang, N.; Yang, X.-Q.; Gu, L.; Liu, X.-S.; Shi, S.-Q.; Commun. 2017, 8, 1-9.
    DOI:10.1038/s41467-017-00677-3
  • “Synchrotron X-ray analytical techniques for studying materials electrochemistry in rechargeable batteries.” Lin, F.; Liu, Y.; Yu, X.; Cheng, L.; Singer, A.; Shpyrko, O. G.; Xin, H. L.; Tamura, N.; Tian, C.; Weng, T.-C.; Rev. 2017, 117, 13123-13186. DOI:10.1021/acs.chemrev.7b00007
  • “Electronic structural studies on the improved thermal stability of Li (Ni8 Co0.15 Al0.05)O2 by ZrO2 coating for lithium ion batteries.” Kim, J.-Y.; Kim, S. H.; Kim, D. H.; Susanto, D.; Kim, S. Y.; Chang, W.-Y.; Cho, B. W.; Yoon, W.-S.; Bak, S. M.; Yang, X. Q.; J. Appl. Electrochem. 2017, 47, 565-572. DOI:10.1007/s10800-017-1062-5
  • “Na-ion intercalation and charge storage mechanism in 2D vanadium carbide.” Bak, S. M.; Qiao, R.; Yang, W.; Lee, S.; Yu, X.; Anasori, B.; Lee, H.; Gogotsi, Y.; Yang, X. Q.; Advanced Energy Materials 2017, 7, 1700959. DOI:10.1002/aenm.201700959

2016

  • “High-rate charging induced intermediate phases and structural changes of layer-structured cathode for lithium-ion batteries.” Zhou, Y. N.; Yue, J. L.; Hu, E.; Li, H.; Gu, L.; Nam, K. W.; Bak, S. M.; Yu, X.; Liu, J.; Bai, J;. Advanced Energy Materials 2016, 6, 1600597. DOI:10.1002/aenm.201600597
  • “Imaging the surface morphology, chemistry and conductivity of LiNi 1/3 Fe 1/3 Mn 4/3 O 4 crystalline facets using scanning transmission X-ray microscopy.” Zhou, J.; Wang, J.; Cutler, J.; Hu, E.; Yang, X.-Q.; PCCP 2016, 18, 22789-22793. DOI:10.1039/C6CP03511F
  • “Structural integrity—searching the key factor to suppress the voltage fade of Li-rich layered cathode materials through 3D X-ray imaging and spectroscopy techniques.” Xu, Y.; Hu, E.; Yang, F.; Corbett, J.; Sun, Z.; Lyu, Y.; Yu, X.; Liu, Y.; Yang, X.-Q.; Li, H.; Nano Energy 2016, 28, 164-171. DOI:10.1016/j.nanoen.2016.08.039
  • “Understanding the degradation mechanism of lithium nickel oxide cathodes for Li-ion batteries.” Xu, J.; Hu, E.; Nordlund, D.; Mehta, A.; Ehrlich, S. N.; Yang, X.-Q.; Tong, W.; ACS applied materials & interfaces 2016, 8, 31677-31683. DOI:10.1021/acsami.6b11111
  • “A highly active and stable hydrogen evolution catalyst based on pyrite-structured cobalt phosphosulfide.” Liu, W.; Hu, E.; Jiang, H.; Xiang, Y.; Weng, Z.; Li, M.; Fan, Q.; Yu, X.; Altman, E. I.; Wang, H.; Commun. 2016, 7, 1-9. DOI:10.1038/ncomms10771
  • “Explore the effects of microstructural defects on voltage fade of Li-and Mn-rich cathodes.” Hu, E.; Lyu, Y.; Xin, H. L.; Liu, J.; Han, L.; Bak, S.-M.; Bai, J.; Yu, X.; Li, H.; Yang, X.-Q.; Nano Lett. 2016, 16, 5999-6007. DOI:10.1021/acs.nanolett.6b01609
  • “Utilizing Environmental Friendly Iron as a Substitution Element in Spinel Structured Cathode Materials for Safer High Energy Lithium-Ion Batteries.” Hu, E.; Bak, S. M.; Liu, Y.; Liu, J.; Yu, X.; Zhou, Y. N.; Zhou, J.; Khalifah, P.; Ariyoshi, K.; Nam, K. W.; Advanced Energy Materials 2016, 6, 1501662. DOI:10.1002/aenm.201501662
  • “Visualizing non-equilibrium lithiation of spinel oxide via in situ transmission electron microscopy.” He, K.; Zhang, S.; Li, J.; Yu, X.; Meng, Q.; Zhu, Y.; Hu, E.; Sun, K.; Yun, H.; Yang, X.-Q.; Commun. 2016, 7, 1-9. DOI:10.1038/ncomms11441
  • “Stability of the solid electrolyte interface on the Li electrode in Li–S batteries.” Zheng, D.; Yang, X.-Q.; Qu, D.; ACS applied materials & interfaces 2016, 8, 10360-10366. DOI:10.1021/acsami.6b02242
  • “Reaction between lithium anode and polysulfide ions in a l ithium-sulfur battery.” Zheng, D.; Yang, X.-Q.; Qu, D.; ChemSusChem 2016, 9. DOI:10.1002/cssc.201600878
  • “Quantification of honeycomb number-type stacking faults: application to Na3Ni2BiO6 cathodes for Na-ion batteries.” Liu, J.; Yin, L.; Wu, L.; Bai, J.; Bak, S.-M.; Yu, X.; Zhu, Y.; Yang, X.-Q.; Khalifah, P. G.; Chem. 2016, 55, 8478-8492. DOI:10.1021/acs.inorgchem.6b01078
  • “Scalable fabrication of micron-scale graphene nanomeshes for high-performance supercapacitor applications.” Kim, H.-K.; Bak, S.-M.; Lee, S. W.; Kim, M.-S.; Park, B.; Lee, S. C.; Choi, Y. J.; Jun, S. C.; Han, J. T.; Nam, K.-W.; Energy Environ. Sci. 2016, 9, 1270-1281. DOI:10.1039/C5EE03580E

2015

  • "Direct observation of the redistribution of sulfur and polysufides in Li–S batteries during the first cycle by in situ X-ray fluorescence microscopy," X. Yu, H. Pan, Y. Zhou, P. Northrup, J. Xiao, S. Bak, M. Liu, K. Nam, D. Qu, J. Liu, T. Wu, X.-Q. Yang, Adv. Energy Mater. (2015), 5, 1500072.
  • "Ti-substituted tunnel-type Na0.44MnO2 oxide as a negative electrode for aqueous sodium-ion batteries," Y. Wang, J. Liu, B. Lee, R. Qiao, Z. Yang, S. Xu, X. Yu, L. Gu, Y.-S. Hu, W. Yang, K. Kang, H. Li, X.-Q. Yang, L. Chen, X. Huang, Nature Commun. (2015), 6, 6401.
  • "Probing reversible multi-electron transfer and structure evolution of Li1.2Cr0.4Mn0.4O2 cathode material for Li-ion batteries in a voltage range of 1.0-4.8 V," Y. Lyu, N. Zhao, E. Hu, R. Xiao, X. Yu, L. Gu, X.Q. Yang, H. Li, Chem. Mater. (2015), 27, 5238.
  • "A high capacity positive electrode material with tunnel-type structure for aqueous sodium-ion batteries," Y. Wang, L. Mu, J. Liu, Z. Yang, X. Yu, L. Gu, Y.-S. Hu, H. Li, X.-Q. Yang, L. Chen, X. Huang, Adv. Energy Mater. (2015), 5, 1501005.
  • "Probing the mechanism of high capacitance in 2D titanium carbide using in situ X-ray absorption spectroscopy," M. Lukatskaya, S. Bak, X. Yu, X.-Q. Yang, M.W. Barsoum, Y. Gogotsi, Adv. Energy Mater. (2015), 5, 1500589.
  • "Effects of structural defects on the electrochemical activation of Li2MnO3," L. Xiao, J. Xiao, X. Yu, P. Yan, J. Zheng, M. Engelhard, P. Bhattacharya, C. Wang, X.-Q. Yang, J.-G. Zhang, Nano energy (2015), 16, 143.
  • "Quantitative and qualitative determination of polysulfide species in the electrolyte of a lithium–sulfur battery using HPLCESI/MS with one-step derivatization," D. Zheng, D. Qu, X.-Q. Yang, X. Yu, H. Lee, D. Yu, Adv. Energy Mater. (2015), 5, 1401888.
  • "Transitions from near-surface to interior redox upon lithiation in conversion electrode materials," K. He, H. Xin, K. Zhao, X. Yu, D. Nordlund, T.-C. Weng, J. Li, Y. Jiang, C. A. Cadigan, R. M. Richards, M. M. Doeff, X.-Q. Yang, E. A. Stach, J. Li, F. Lin, D. Su, Nano Lett. (2015), 15, 1437.
  • "Effects of Mg doping on the remarkably enhanced electrochemical performance of Na3V2(PO4)3 cathode materials for sodium ion batteries," H. Li, X. Yu, Y. Bai, F. Wu, C. Wu, L. Liu, X.-Q. Yang, J. Mater. Chem. A. (2015), 3, 9578.
  • "FeO0.7F1.3/C Nanocomposite as a High-Capacity Cathode Material for Sodium-Ion Batteries," Y. N. Zhou, M. Sina, N. Pereira, X. Yu, G.G. Amatucci, X. Q. Yang, F. Cosandey, K. W. Nam, Adv. Funct. Mater. (2015), 25, 696.
  • "Quantitative chromatographic determination of dissolved elemental sulfur in the non-aqueous electrolyte for lithium-sulfur batteries," D. Zheng, X. Zhang, C. Li, M. E. McKinnon, R. G. Sadok, D. Qu, X. Yu, H.-S. Lee, X.-Q. Yang, D. Qu, J. Electrochem. Soc. (2015), 162, A203.
  • "Direct observation of sulfur radicals as reaction media in lithium sulfur batteries," Q. Wang, J. Zheng, E. Walter, H. Pan, D. Lv, P. Zuo, H. Chen, Z. D. Deng, B. Y. Liaw, X. Yu, X.-Q. Yang, J.-G. Zhang, J. Liu, J. Xiao, J. Electrochem. Soc. (2015), 162, A474.
  • "Insight into the atomic structure of high-voltage spinel LiNi0.5Mn1.5O4 cathode material," M. Lin, L. Ben, Y. Sun, H. Wang, Z. Yang, L. Gu, X. Yu, X.-Q. Yang, H. Zhao, R. Yu, M. Armand, X. Huang, Chem. Mater. (2015), 27, 292.
  • "Removal of interstitial H2O in hexacyanometallates for a superior cathode of a sodium-ion battery," J. Song, L. Wang, Y. Lu, J. Liu, B. Guo, P. Xiao, J.-J. Lee, X.-Q. Yang, G. Henkelman, J. B. Goodenough, J. Am. Chem. Soc. (2015), 137, 2658.
  • "High-surface-area nitrogen-doped reduced graphene oxide for electric double-layer capacitors," H.-C. Youn, S. Bak, M.S. Kim, C. Jaye, D.A. Fischer, C.W. Lee, X.-Q. Yang, K.C. Roh, K.B. Kim, ChemSusChem (2015), 8, 1875.
  • "Unveiling surface redox charge storage of interacting two-dimensional heteronanosheets in hierarchical Architectures," Q. Mahmood, M.G. Kim, S. Yun, S. Bak, X.-Q. Yang, H.S. Shin, W.S. Kim, P.V Braun, H. S. Park, Nano Lett. (2015), 15, 2269.

2014

  • “Tuning the electrochemical performances of anthraquinone organic cathode materials for Li-ion batteries through the sulfonic sodium functional group,” W. Wan, H. Lee, X. Yu, C. Wang, K.W. Nam, X.-Q. Yang, H.H. Zhou, RSC Adv. (2014), 4, 19878.
  • “Nanoscale lamellar monoclinic Li2MnO3 phase with stacking disordering in lithium-rich and oxygen-Deficient Li1.07Mn1.93O4-delta Cathode Materials,” Z.L. Xu, J.B. Wang, K. Zhang, H. Zheng, Z.X. Dai, J.N. Gui, X.-Q. Yang, ACS Appl. Mater. & Interfaces (2014), 6, 1219.
  • “Oxygen-release-related thermal stability and decomposition pathways of LixNi0.5Mn1.5O4 cathode materials,” E. Hu,; S. Bak, J. Liu, X. Yu, Y. Zhou, S.N. Ehrlich, X.-Q. Yang, K.N. Nam, Chem. Mater. (2014), 26, 1108.
  • “Identifying the critical role of Li substitution in P2-Nax[LiyNizMn1-y-z]O2 (0 < x, y, z < 1) intercalation cathode materials for high-energy Na-ion batteries,” J. Xu, D.H. Lee, R.J. Clement, X. Yu, M. Leskes, A.J. Pell, G. Pintacuda, X.-Q. Yang, C.P. Grey, Y.S. Meng, Chem. Mater. (2014), 26, 1260.
  • “Structural changes in reduced graphene oxide upon MnO2 deposition by the redox reaction between carbon and permanganate Ions,” S.W. Lee, S. Bak, C.W. Lee, C. Jaye, D.A. Fischer, B.K. Kim, X.-Q. Yang, K.W. Nam, K.B. Kim, J. Phys. Chem. C (2014), 118, 2834.
  • “Sol-gel synthesis of aliovalent vanadium- doped LiNi0.5Mn1.5O4 cathodes with excellent performance at high temperatures,” M.C. Kim, K.W. Nam, E. Hu, X.-Q. Yang, H. Kim, K. Kang, V. Aravindan, W.S. Kim, Y.S. Lee, ChemSusChem (2014), 7, 829.
  • “Understanding the rate capability of high-energy-density Li-rich layered Li1.2Ni0.15Co0.1Mn0.55O2 cathode materials,” X. Yu, Y. Lyu, L. Gu, H.M. Wu, S. Bak, Y. Zhou, K. Amine, S.N. Ehrlich, H. Li, K.W. Nam, X.-Q. Yang, Adv. Energy Mater. (2014), 4, 1300950.
  • “Role of surface structure on Li-ion energy storage capacity of two-dimensional transition-metal carbides,” Y. Xie, M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, X. Yu, K.W. Nam, X.-Q. Yang, A.I. Kolesnikov, P.R.C. Kent, J. Am. Chem. Soc. (2014), 136, 6385.
  • “Unexpected high power performance of atomic layer deposition coated Li[Ni1/3Mn1/3Co1/3]O2 cathodes,” J.W. Kim, J.J. Travis, E. Hu, K.W. Nam, S.C. Kim, C.S. Kang, J.H. Woo, X.-Q. Yang, S.M. George, K.H. Oh, S.J. Cho, S.H. Lee, J. Power Sources (2014), 254, 190.
  • "Feasibility of using Li2MoO3 in constructing Li-rich high energy density cathode materials,” J. Ma, Y. Zhou, Y. Gao, X. Yu, Q.Y. Kong, L. Gu, Z.X. Wang, X.-Q. Yang, L.Q. Chen, Chem. Mater. (2014), 26, 3256.
  • “Ionic Conduction in cubic Na3TiP3O9N, a secondary Na-ion battery cathode with extremely low volume change,” J. Liu, D.H. Chang, P. Whitfield, Y. Janssen, X. Yu, Y. Zhou, J. Bai, J. Ko, K.W. Nam, L.J. Wu, Y.M. Zhu, M. Feygenson, G. Amatucci, A. Van der Ven, X.-Q. Yang, P. Khalifah, Chem. Mater. (2014), 26, 3295.
  • “A long-life lithium-ion battery with a highly porous TiNb2O7 anode for large-scale electrical energy storage,” B.K. Guo, X. Yu, X.G. Sun, M.F. Chi, Z.A. Qiao, J. Liu, Y.S. Hu, X.-Q. Yang, J.B. Goodenough, S. Dai, Energy Environ Sci. (2014), 7, 2220.
  • “Sodiation via heterogeneous disproportionation in FeF2 electrodes for sodium-ion batteries,” K. He, Y. Zhou, P. Gao, L.P. Wang, N. Pereira, G.G. Amatucci, K.W. Nam, X.-Q. Yang, Y.M. Zhu, F. Wang, D. Su, ACS NANO (2014), 8, 7251.
  • “Structures of delithiated and degraded LiFeBO3, and their distinct changes upon electrochemical cycling,” S.H. Bo, K.W. Nam, O.J. Borkiewicz, Y.Y. Hu, X.-Q. Yang, P.J. Chupas, K.W. Chapman, L.J. Wu, L. Zhang, F. Wang, C.P. Grey, P.G. Khalifah, Inorg. Chem. (2014), 53, 6585.
  • “Molybdenum substitution for improving the charge compensation and activity of Li2MnO3,” J. Ma, Y. Zhou, Y.R. Gao, Q.Y. Kong, Z.X. Wang, X.-Q. Yang, L.Q. Chen, Chem. A. Euro. J. (2014), 20, 8723.
  • “The new electrochemical reaction mechanism of Na/FeS2 cell at ambient temperature,” Z. Shadike, Y. Zhou, F. Ding, L. Sang, K.W. Nam, X.-Q. Yang, Z.W. Fu, J. Power Sources (2014), 260, 72.
  • “Tuning charge-discharge induced unit-cell-breathing through metal-metal bonding in layer-structured cathode materials for lithium-ion batteries,” Y. Zhou, J. Ma, E. Hu, X. Yu, L. Gu, K.W. Nam, L. Chen, Z.X. Wang, X.-Q. Yang, Nature Commun. (2014), 5, 6381.
  • In situ soft XAS study on nickel-based layered cathode material at elevated temperatures: A novel approach to study thermal stability,” W.S. Yoon, O. Haas, S. Muhammad, H. Kim, W. Lee, D. Kim, D.A. Fischer, C. Jaye, X.-Q. Yang, M. Balasubramanian, K.W. Nam, Sci. Rep. (2014), 4, 6827.

2013

  • “Li(Mn1/3Ni1/3Fe1/3)O2-Polyaniline hybrids as cathode active material with ultra-fast charge-discharge capability for lithium batteries,” K. Karthikeyan, S. Amaresh, V. Aravindan, W.S. Kim, K.W. Nam, X.-Q. Yang, Y.S. Lee, J. Power Sources (2013), 232, 240.
  • “Elucidating the nature of pseudo Jahn-Teller distortions in LixMnPO4: Combining density functional theory with soft and hard X-ray spectroscopy,” L.F.J. Piper, N.F. Quackenbush, S. Sallis, D.O, Scanlon, G.W. Watson, K.W. Nam, X.-Q. Yang, K.E. Smith, F. Omenya, N.A. Chernova, M.S. Whittingham, J. Phys. Chem. C. (2013), 117, 10383.
  • “Electrochemical properties of P2-phase Na0.74CoO2 compounds as cathode material for rechargeable sodium-ion batteries,” J.J. Ding, Y. Zhou, Q. Sun, X. Yu, X.-Q. Yang, Z.W. Fu, Electrochimica Acta (2013), 87, 388.
  • “Phase transition behavior of NaCrO2 during sodium extraction studied by synchrotron-based X-ray diffraction and absorption spectroscopy,” Y. Zhou, J.J. Ding, K.W. Nam, X. Yu, S. Bak, E. Hu, J. Liu, J. Bai, H. Li, Z.W. Fu, X.-Q. Yang, J. Mater. Chem. A (2013), 1, 11130.
  • “Electrochemical Oxidation of Solid Li2O2 in Non-aqueous Electrolyte Using Peroxide Complexing Additives for Lithium-Air Batteries,” D. Zheng, H.S. Lee, X.-Q. Yang, D.Y. Qu, Electrochem. Commun. (2013), 28, 17.
  • “Triplite LiFeSO4F as cathode material for Li-ion batteries,” J. Dong, X. Yu, Y. Sun, L. Liu, X.-Q. Yang, X. Huang, J. Power Sources (2013), 244, 716.
  • “Correlating structural changes and gas evolution during the thermal decomposition of charged LixNi0.8Co0.15Al0.05O2 cathode materials,” S. Bak, K.W. Nam, W. Chang, X.Yu, E. Hu, S. Hwang, E.A. Stach, K.B. Kim, K.Y. Chung, X.-Q. Yang, Chem. Mater. (2013), 25, 337.
  • “Combining in situ synchrotron X-ray diffraction and absorption techniques with transmission electron microscopy to study the origin of thermal instability in overcharged cathode materials for lithium-ion batteries,” K.W. Nam, S.M. Bak, E. Hu, X. Yu, Y. Zhou, X.J. Wang, L.J. Wu, Y.M. Zhu, K.Y. Chung, X.-Q. Yang, Adv. Funct. Mater. (2013), 23, 1047.
  • “Catalytic disproportionation of the superoxide intermediate from electrochemical O2 reduction in nonaqueous electrolytes,” D. Zheng, Q. Wang, H.S. Lee, X.-Q. Yang, D.Y. Qu, Chem. A Euro. J. (2013), 19, 8679.
  • “Thermal stability of charged LiNi0.5Co0.2Mn0.3O2 cathode for Li-ion batteries investigated by synchrotron based in situ X-ray diffraction,” Y.H. Cho, D. Jang, J. Yoon, H. Kim, T.K. Ahn, K.W. Nam, Y.E. Sung, W.S. Kim, Y.S. Lee, X.-Q. Yang, W.S. Yoon, J. Alloys Compd. (2013), 562, 219.
  • “A zero-strain layered metal oxide as the negative electrode for long-life sodium-ion batteries,” Y.S. Wang, X. Yu, S.Y. Xu, J. Bai, R.J. Xiao, Y.S. Hu, H. Li, X.-Q. Yang, L. Chen, X. Huang, Nature Commun. (2013), 4, 2365.
  • In situ ESR spectro-electrochemical investigation of the superoxide anion radical during the electrochemical O2 reduction reaction in aprotic electrolyte,” Q. Wang, X.-Q. Yang, D.Y. Qu, Carbon (2013), 61, 336.
  • “Sodium storage and transport properties in layered Na2Ti3O7 for room-temperature sodium-ion batteries,” H.L. Pan, X. Lu, X. Yu, Y.S. Hu, H. Li, X.-Q. Yang, L. Chen, Adv. Energy Mater. (2013), 3, 1186.
  • “A size-dependent sodium storage mechanism in Li4Ti5O12 investigated by a novel characterization technique combining in situ X-ray diffraction and chemical sodiation,” X. Yu, H.L. Pan, W. Wan, C. Ma, J. Bai, Q.P. Meng, S.N. Ehrlich, Y.S. Hu, X.-Q. Yang, Nano Lett. (2013), 13, 4721.
  • “Electrochemical reaction of lithium with nanostructured silicon anodes: a study by in-situ synchrotron X-ray diffraction and electron energy-loss spectroscopy,” F. Wang, L.J. Wu, B. Key, X.-Q. Yang, C.P. Grey, Y.M. Zhu, J. Graetz, Adv. Energy Mater. (2013), 3, 1324.
  • “Divalent iron nitridophosphates: a new class of cathode materials for Li-ion batteries,” J. Liu, X. Yu, E. Hu, K.W. Nam, X.-Q. Yang, P.G. Khalifah, Chem. Mater. (2013), 25, 3929.
  • “Interplay between two-phase and solid solution reactions in high voltage spinel cathode material for lithium ion batteries,” J. Xiao, X. Yu, J. Zheng, Y. Zhou, F. Gao, X. Chen, J. Bai, X.-Q. Yang, J.G. Zhang, J. Power Sources (2013), 242, 736.
  • “Origin of additional capacities in metal oxide lithium-ion battery electrodes,” Y.Y. Hu, Z.G. Liu, K.W. Nam, O.J. Borkiewicz, J. Cheng, X. Hua, M.T. Dunstan, X. Yu, K.M. Wiaderek, L.S. Du, K.W. Chapman, P.J. Chupas, X.-Q. Yang, C.P. Grey, Nature Mater. (2013), 12, 1130.

2012

  • "α-MnO2 as a cathode material for rechargeable Mg batteries," R. Zhang, X. Yu, K.W. Nam, C. Ling, T.S. Arthur, W. Song, A. Knapp, S.N. Ehrlich, X.-Q. Yang, M. Matsui, Electrochem. Commun. (2012), 23, 110.
  • “Anomalous pseudocapacitive behavior of a nanostructured, mixed-valent manganese oxide film for electrical energy storage,” M.K. Song, S. Cheng, H. Chen, W. Qin, K.W. Nam, S. Xu, X.-Q. Yang, A. Bongiorno, J. Lee, J. Bai, T. A. Tyson, J. Cho, M. Liu, Nano Lett. (2012), 12, 3483.
  • “Energy storage in composites of a redox couple host and a lithium ion host,” S.W. Kim, K.W. Nam, D.H. Seo, J. Hong, H. Kim, H. Gwon, K. Kang, Nano Today (2012), 7, 168.
  • “Structural study of the coating effect on the thermal stability of charged MgO-coated LiNi0.8Co0.2O2 cathodes investigated by in situ XRD,” W.S. Yoon, K.W. Nam, D. Jang, K.Y. Chung, J. Hanson, J.M. Chen, X.-Q. Yang, J Power Sources (2012), 217, 128.
  • “Electrochemical decomposition of Li2CO3 in NiO–Li2CO3 nanocomposite thin film and powder electrodes,” R. Wang, X. Yu, J. Bai, H. Li, X. Huang, L. Chen, X.-Q. Yang, J Power Sources (2012), 217, 113.
  • “Emerging applications of atomic layer deposition for lithium-ion battery studies,” X. Meng, X.-Q. Yang, X. Sun, Adv. Mater. (2013), 24, 3589.
  • “Degradation and (de)lithiation processes in the high capacity battery material LiFeBO3,” S.H. Bo, F. Wang, Y. Janssen, D. Zeng, K.W. Nam, W. Xu, L. Du, P. Stephens, J. Graetz, X.-Q. Yang, Y. Zhu, J. Praise, C.P. Grey, P. Khalifah, J. Mater. Chem. (2012), 22, 8799.
  • “Influence of the evolution of two tetragonal phases on the capacity fade of LiMn1.5Ni0.5O4-δ for the high energy application,” E.S. Lee, K.W. Nam, E. Hu, A. Manthiram, Chem. Mater. (2012), 24, 3610.
  • “High rate delithiation behaviour of LiFePO4 studied by quick X-ray absorption spectroscopy,” X. Yu, Q. Wang, Y. Zhou, H. Li, X.-Q. Yang, K.W. Nam, S.N. Ehrlich, S. Khalid, Y.S. Meng, Chem. Commun. (2012), 48, 11537.
  • "Enhanced Li+ ion transport in LiNi0.5Mn1.5O4 through control of site disorder," J. Zheng, J. Xiao, X. Yu, L. Kovarik, M. Gu, F. Omenya, X. Chen, X.-Q. Yang, J. Liu, G.L. Graff, M.S. Whittingham, J.G. Zhang, Phys. Chem. Chem. Phys. (2012), 14, 13515.

2011

  • “Increased discharge capacity of a Li-air activated carbon cathode produced by preventing carbon surface passivation,” C. Tran, J. Kafle, X.-Q. Yang, D. Qu, Carbon (2011), 49, 1266.
  • “High rate oxygen reduction in non-aqueous electrolytes with the addition of perfluorinated additives,” Y. Wang, D. Zheng, X.-Q. Yang, D. Qu, Energy Environ. Sci. (2011), 4, 3697.
  • “Comparative studies on C-coated and uncoated LiFePO4 cycling at various rates and temperatures using synchrotron based in situ X-ray diffraction,” H.C. Shin, K.W. Nam, W.Y. Chang, B.W. Cho, W.S. Yoon, X.-Q. Yang, K.Y. Chung, Electrochimica Acta (2011), 56, 1182.
  • “Electrochemical investigation of Al–Li/LixFePO4 cells in oligo(ethylene glycol) dimethyl ether/LiPF6,” X. Wang, Y. Zhou, H.S. Lee, K.W. Nam, X.-Q. Yang, O. Haas, J. Appl. Electrochem. (2011), 41, 241.
  • “Electrochemical investigation of Al–Li anode in oligo(ethylene glycol) dimethyl ether/LiPF6,” Y. Zhou, X. Wang, H. Lee, K.W. Nam, X.-Q. Yang, O. Haas, J. Appl. Electrochem. (2011), 41, 271.
  • “Structural evolution and related thermal instability of overcharged LiNi0.8Co0.15Al0.05O2 and LiNi1/3Co1/3Mn1/3O2 layered cathodes for Li-ion batteries,” L. Wu, K.W. Nam, X. Wang, Y. Zhou, J.C. Zheng, X.-Q. Yang, Y.M. Zhu, Chem. Mater. (2011), 23, 3953.
  • "New in-situ synchrotron X-ray diffraction technique to study the chemical delithiation of LiFePO4," X. Wang, H.Y. Chen, X. Yu, L. Wu, K.W. Nam, J. Bai, H. Li, X. Huang, X.-Q. Yang, Chem. Commun. (2011), 47, 7170.
  • "Investigation of the structural changes in Li1-xFePO4 upon chargingby synchrotron radiation techniques," X. Wang, C. Jaye, K.W. Nam, B. Zhang, H.Y. Chen, J. Bai, H. Li, X. Huang, D.A. Fischer, X.-Q. Yang, J. Mater. Chem. (2011), 21, 11406.
  • “Electrochemically induced high capacity displacement reaction of PEO/MoS2/graphene nanocomposites with lithium,” J. Xiao, X. Wang, X.-Q. Yang, S. Xun, G. Liu, P.K. Koech, J. Liu, J.P. Lemmon, Adv. Funct. Mater. (2011), 21, 2840.
  • “Formation of an SEI on a LiMn2O4 cathode during room temperature charge–discharge cycling studied by soft X-ray absorption spectroscopy at the Fluorine K-edge,” K.Y. Chung, W.S. Yoon, K.B. Kim, B.W. Cho, X.-Q. Yang, J. Appl. Electrochem. (2011), 41, 1295.
  • “Can vanadium be substituted into LiFePO4?,” F. Omenya, N.A. Chernova, S. Upreti, P.Y. Zavalij, K.-W. Nam, X.-Q. Yang, M.S. Whittingham, Chem. Mater. (2011), 23, 4733.
  • "Spinel LiMn2O4/reduced graphene oxide hybrid for high rate lithium ion batteries," S. Bak, K.W. Nam, C.W. Lee, K.H. Kim, H.C. Jung, X.-Q. Yang, K.B. Kim, J. Mater. Chem. (2011), 21, 17309.
  • “Amorphous hierarchical porous GeOx as high-capacity anodes for Li Ion batteries with very long cycling life,” X.L. Wang, W.Q. Han, H.Y. Chen, J. Bai, T.A. Tyson, X. Yu, X. Wang, X.-Q. Yang, J. Am. Chem. Soc. (2011), 133, 20692.
  • “High-rate oxygen reduction in mixed nonaqueous electrolyte containing acetonitrile,” D. Zheng, X.-Q. Yang, D. Qu, Chem. An Asian J. (2011), 6, 3306.
  • “The Kinetic effect of structural behavior of mixed LiMn2O4-LiNi1/3Co1/3Mn1/3O2 cathode materials studied by time-resolved X-ray diffraction technique,” W.S. Yoon, K.W. Nam, D. Jang, K.Y. Chung, S. Choi, X.-Q. Yang, Electrochem. Commun. (2012), 15, 74.