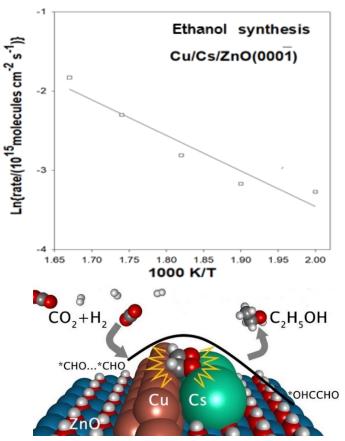
Scientific Achievement


Researchers demonstrated that Cs doping on a $Cu/Zn(000\ \overline{1})$ surface, a model CO_2 conversion catalyst, opened a direct catalytic pathway to ethanol synthesis by tuning selective binding of key intermediates to enable C-C coupling and to improve methanol synthesis.

Significance and Impact

Conversion of greenhouse gas CO_2 into higher alcohols is desirable for sustainable fuels. The Cu/ZnO/Al₂O₃ catalyst is the dominant industrial catalyst for methanol synthesis by CO_2 hydrogenation. This work shows Cs doping of the catalyst has promise for higher alcohols and gives a mechanistic basis for further improvements.

Research Details

- Catalytic testing confirmed ethanol synthesis activity.
- X-ray photoemission spectroscopy (XPS) identified a change in the reaction mechanism for CO_2 to oxygenates by Cs deposition on Cu/ZnO(0001).
- Density functional theory (DFT) and kinetic Monte Carlo (KMC) simulation showed Cs-tuned binding of *CHO to facilitate further hydrogenation to methanol and open a new route toward ethanol synthesis via *OHC-CHO coupling.

Top: Arrhenius plot for ethanol synthesis from CO_2 and H_2 at 0.5 atm of CO_2 and 4.5 atm of H_2 ; **Bottom:** Structures of Cu-Cs-ZnO interface on Cu/Cs/ZnO(0001) surface, active for C-C coupling and ethanol synthesis.

X. Wang, P. J. Ramírez, W. Liao, J. A. Rodriguez, and P. Liu, JACS. 143, 13103 (2021) (Front cover) .

