

Transforming Pt-CeO₂ interfaces into Active and Stable Catalysts for the Conversion of Carbon Dioxide and Methane

Scientific Achievement

Scientists developed active catalysts for conversion of carbon dioxide and methane to syngas (CO/H_2) , using Pt-CeO₂ interfaces with small Pt clusters activated by strong metal-support interactions with ceria.

Significance and Impact

The reaction of CO₂ and CH₄ to produce syngas (methane dry reforming, MDR) converts two greenhouse gases to chemical intermediates for

 $Pt/CeO_2(111)$ shows stable activity: higher than other M-CeO₂ surfaces (left), and without deactivation seen for Pt(111) (right)

sustainable fuel production but requires better catalysts. Here, strong metal-support interactions in Pt-CeO₂ interfaces activate both CO₂ and CH₄ reactants for MDR at moderate temperature (500 C). Pt-CeO₂ has higher activity and selectivity than other M-CeO₂ (M= Ni, Co, Fe, Cu) surfaces and avoids C deactivation that is a limitation of bulk platinum surfaces.

Research Detail

- Experimental studies characterized systems by combined in-situ/operando methods (AP-XPS, XRD, XAFS)
- Studies identified important role of an active Pt-CeO_{2-x} interface where both oxide and metal are involved, and oxide-metal synergy is critical for activity and stability
- Reactor powder catalyst studies (0.5 wt% Pt/CeO₂) confirmed stable activity consistent with models

Feng Zhang, Ramón A. Gutiérrez, Pablo G. Lustemberg, Zongyuan Liu, Ning Rui, Tianpin Wu, Pedro J. Ramírez, Wenqian Xu, Hicham Idriss, M. Verónica Ganduglia-Pirovano, Sanjaya D. Senanayake, and José A. Rodriguez, ACS Catalysis, 11 (2021) 1613-1623

