June 26, 2004 International Symposium on Ultrafast Accelerators for Pulse Radiolysis

Laser plasma cathode by 12 TW, 50 fs laser and its application to radiation chemistry

Mitsuru Uesaka

Nuclear Engineering Research Laboratory , University of Tokyo

Two New Accelerator Rooms Compact Medical Linac/Laser Plasma Beam Source

12TW 50fs Laser Plasma Beam Source

Experimental area

Optical Injection Methods

- · Ponderomotive injection from single pulse
 - Injection pulse intersects wake from pump at 90°
 - · Ponderomotive force injects electrons
 - Umstadater et al., PRL 96
 - Hemker et al., PRE 98 $F_z \propto \nabla a_1^2 \propto a_1^2 / r_1$
- · Beat wave injection from colliding pulses
 - Two counterpropagating injection pulses collide
 - · Injection from beat wave with slow phase velocity
 - Esarey et al., PRL 97
 - Schroeder et al., PRE 99

$$F_z \propto \sqrt{a_1 a_2} \propto a_1 a_2 / \lambda_0$$

 $\Gamma \sim \nabla - - 1$

$$v_{ph} \approx \Delta \omega \, / \, \Delta k \approx \Delta \omega \, / \, 2k_0 << c$$

- Downward density transitions
 - · Wake phase velocity decreases on down ramp
 - Wavebreaking induced some distance behind pump
 - Bulanov et al., PRE 98
 - Suk et al., PRL 01

Electron Injection by Plasma Wave Breaking

 Wave-breaking field
 E_B~[2(ω/ω_{pl}-1)]^{1/2} mc ω_{pl}/e
 Density gradient
 λ_{pl} N/(dN/dx)~1
 ω:Laser frequency
 ω_{pl}: plasma frequency
 λ_{pl}=2πc/ω_{pl}
 λ_{pl}: plasma wavelength

Femtosecond electron bunch generation **Proper injection into correct** acceleration. phase of wakefield Gas Jet Plasma Injection by Pump wave-breaking Pulse Wakefield e-Bunch) Acceleration Density Density Steep Density Transition

Reference : S.V.Bulanov, et al, Phys.Rev.E. 58, R5257

Experimental Set-up

Laser Spot Measurement

High-density well-defined gas jet (1) Shockwave free supersonic nozzle

Typical Image of Electron Beam Generation (Experimental Results: Signals on I.P.)

Reference: T.Hosokai, et al., Phys Rev.E 67,036407 (2003)

Laser Pre-pulse Effect (Hydrodynamic Simulation Results)

0

0

In our case (for Short Rayleigh length Optics ; contrast to LULI, LOA Group)

 Cavity formation

 Density steepening by shock wave

 <1 ns No Injection</td>

 2~3 ns Injection by Wave-breaking

 > 5 ns Hydrodynamic instability

 > Exploded spots

Pre-pulse Effect in High-density Plasma ——— Cavity Formation Depends on Pre-pulse ———

e-spot on LANEX

Reference: T.Hosokai, et al., Phys. Plasmas (In press 2004)

Ejected e-Beam has a spatial structure? Quasi-mono-energy distribution ???

Femtosecond e-Beam Generation from Gas Jet (Picture from experimental results)

Mono-energetic spectra?

Acceleration gradient [GeV/m] 50

We are developing a capillary plasma target

High-charge injection Wave breaking at the interface High-Density Gas Jet Controlled-prepulse Capillary Discharge(Z-pinch?) - Optical wave-guide **Further** Acceleration Mono-energetic spectrum Ti-Sapphire Gas-jet ~few cm **Optical** waveguide have been already demonstrated. OAP Wall $D = \sim 1 mm$ DC Channel D<30 µm axis 409 mm 400 um ~20kV -5 x10 cm --3 Guided Beam Without Guide Typical e-density profile in the plasma column Be-104T/m produced by fast Z-pinch. Ref. T.Hosokai et.al, Opt Lett. 25, 10(2000)

Measurement for Femtosecond Electron Pulse Duration in one shot

Pump-and-probe Experiment Using Plasma Cathode at University of Tokyo

Big Advantage of Laser Plasma Accelerator for Pump-and-probe analysis

- •Synchronization is perfectly passive without any electronics.
- •No timing jitter and drift between laser and secondary beam.
- •Femtosecond time-resolved analysis is surely available after the bean quality and stability are upgraded.

Summary of Synchronization

1. Laser vs Accelerator Synchronization System via Electronics

Picoseconds time-resolution

2. Laser Seeded Staged Accelerator

Femtoseconds time-resolution

Available for multibunches

3. Laser Plasma Accelerator

Beam Splitter enables even Attoseconds time-resolution After Stable and reliable beam generation and diagnosis are established

Summary

Laser pre-pulse effect

e-beam generation depends strongly on the laser pre-pulse. Pre-plasma control is essential for ejection of MeV "e-beam" from gas jet.

- A Cavity formation by laser prepulse (No pre-plasma channel for short Rayligh length system)
- Density steepening in the cavity due to shock wave
- Electron injection at the shock front due to wave breaking of main pulse
- Strong refraction of the laser pulse at the cavity in high-density plasma
- PIC simulation suggest the electron bunch has ~40 fs bunch duration.

We are preparing

- Gas capillary discharge target.
- Shockwave controlled supersonic gas jet target.
- e-bunch measurement.

Tens Femtosecond or Quasi-Monochromatic Electron Single Bunch by Laser Plasma Cathode (RAL, LBNL, LOA, AIST, U.Tokyo at AAC2004)

AAC 2004 Experimental Results Laser-Plasma Accelerator WG

	LOA	LBNL	RAL- alphaX	AIST	University of Tokio	Neptune, UCLA	NRL	JAERI	Osaka University	KERI
Scheme	SM(for- ced)LWFA	SM- LWFA	SM- LWFA	SM- LWFA	SM- LWFA	PBWA	SM- LWFA	SM- LWFA	LWFA	SM- LWF A
Laser parts	30TW 0.8 mkm, 3x1018 W/cm2, W0=18 mkm, 30fs	8TW 0.8 mkm,1x10 19 W/cm2W0 =7 mkm, 55fs	16TW 0.8 mkm ,1x1 018 W/cm2W0 =25 mkm,40fs	2TW 0.8 mkm 5x1018 W/cm2W0 =5 mkm,50fs	6TW 0.8 mkm 1x1019 W/cm2W0 =6 mkm,50fs	1TW 10.3+ 10.6.mk	10TW 1.06 mkm3x10 18 W/cm2W0 =12 mkm, 500s	20TW 0.8 mkm2.x10 19 W/cm2W0 =5 mkm,, 23fs	30TW 1.06 mkm	2TW 0.8 mkm
Plasm. Density	6x10 ¹⁸ cm ⁻³	2x10 ¹⁹ cm ⁻	2x10 ¹⁹ cm ⁻ 3	.1.5x10 ²⁰ cm ⁻³	1.8x10 ¹⁹ cm ⁻³]x10 ¹⁶ cm ⁻]x10 ¹⁹ cm ⁻	1.4x10 ²⁰ cm ⁻³	6x10 ¹⁶ cm ⁻	1x10 ¹ ⁸ cm ⁻³
Injector type	Self-trapped	Self- trapped	Self- trapped	Self- trapped	Self- trapped	12 MeV external	Optical Injection ioniz.	Self- trapped	Self- trapped	Self- trapp ed
Energy Gain	>170±15 MeV, 500 pC,	86 ±2 −150 MeV 300 pC	78 ±2 MeV 20 pC	7±1 MeV 2 pC	40 MeV	38 MeV	20 MeV	40 MeV	100 MeV	2 MeV
		Channel		Integrated over 90 shots spectrum		Ponderom otive channel	2 TW beam for LIPA injector		Glass capillary	