Detection Systems at LEAF

International Symposium on Ultrafast Accelerators for Pulse Radiolysis – June 26, 2004.

Andrew R. Cook

Brookhaven Science Associates U.S. Department of Energy, BES

LEAF Detection System Overview

Flashlamp/Digitizer

Pulse-Probe

High Pressure

Transient Conductivity

Operational Operational Operational

Operational

Pulse-Pump-Probe Ultrafast Single-Shot In development: 2004 In development: 2004-2005

LEAF Facility Layout

Flashlamp/Transient Digitizer Detection

Characteristics:

- Time resolution ~120 ps
- 200 2500 nm
- $[e-]_{aq} \sim 4-6 \ \mu M \ (8-10 \ nC)$
- Low jitter trigger
- Temperature control

- High stability lamp pulser
- Selection of detectors, digitizers
- Low repetition rate (SS)
- FCUP dosemetry
- Robot sample automation
- Acquisition: VAX ? LabView

Pulse – Probe Detection

Key Characteristics

- 7 ps time resolution (5 mm cell)
- Synced 800 nm, OPA probe 240-1700 nm (2400 nm)
- Acquisition: digitizer as a boxcar
- Sample flow systems
- [e-]_{aq} ~ 9 μM max (8 nC) ~ 140 mOD. 2-3X higher signal due to moving sample closer to beam window (0.5 mil foil)

Planned Enhancements

- Improve S/N
 - Explore additional sample arrangement: 2 - 4X greater signals?
 - Balanced detectors
 - Laser beam transport and mode drift; aperture; imaging ?
 - kHz front end ?
 - Make OPA use more routine
 - Automated sample changers
 - Spectral array detection

Pulse – Probe Software Features

- Interleaved signal and baseline shots
- Faraday cup correction shot by shot
- Dose depletion: ignore first 5 electron pulses
- Dose stability: constant time between acquisitions
- Point rejection: FCUP and laser intensity
- Coupled to an Igor fitting/analysis suite

Dissociation of Aryl Halides in Me₄P

 $RX + e^{-} \xrightarrow{ET} (RX^{-}) \xrightarrow{BB} R^{-} + X^{-}$

10 mM Bp and 30 mM 3BrBp (1.7M THF added as cation scavenger) @650nm

4-BrBiphenyl

N. Takeda, P.V. Poliakov, A.R. Cook, J.R. Miller, *J. Am. Chem. Soc.*, 126(13), 4301 (2004).

High-Pressure Radiolysis at LEAF

A ELECTRON or ION MOBILITIES

LEAF X-RAY CONDUCTIVITY TECHNIQUE EG&G preamp 5185 rise time 2 ns

B ELECTRON ATTACHMENT

C ELECTRON EQUILIBRIA $e^- + CO_2$? CO_2

Use excited states of radical ions to gain access to previously unmeasurable ET rates

- Short distances and large electronic coupling, effects of: solvent motions, molecular symmetry, and small reorganization energies
- Maintain desirable characteristics of radiolysis: 1 charge
- Excited states relatively unknown
 - Low energy
 - Short lifetimes
 - Luminescence rare
 - Clean preparation difficult
 - Understand structure and decay mechanisms
- Lifetimes < 1 ps may be sufficient to drive useful chemistry

Pulse-Pump-Probe Experiment

Increase time resolution 100x for systems utilizing excited states of species formed by radiolysis

Large Charges in Electron Macropulses

- Produced a train of 15-20 short electron pulses with Nd:YAG 266 nm laser pulse
- 100 nc / macropulse produced at cathode; more may be possible
- First attempt yielded
 ~50 nc at sample; with optimization improved transport is expected.

Pulse-Pump-Digitizer Probe

- Triplet species produced by radiolysis in toluene
- Higher energy excited state formed by photo excitation
- Longer transient due to two photon absorption by the sample
- Pulsed diode lasers as probes: lots of light, small spots, fast VIS/NIR detectors

A. Funston, A.R. Cook, J.R. Miller, E. Silverman, K. Schanze

Plan for Pulse-Pump-Probe Detection

* 100 fs time resolution *

Major Components

- Integrate with existing pulse-probe system; adding to existing detection system
- High charge electron macro pulses will allow for arbitrary pulse-pump delay
- Possibly build additional Ti:Sapphire amplifier stage
- High power OPA for excitation
- Existing OPA or white light continuum probe

Need for ultrafast single shot detection methods

- Through solvent ET
- Molecular wires

	Pulse Probe	<u>UFSS</u>
Sample:	1 gram	1-5 mg liquid,
	flowed solution	solid, ionic liquid
e- pulses:	104	1
Scan time:	1 hour	< 5 minutes
Spectra:	days	1-2 hours

Ultrafast single shot detection

UFSS CCD Images

Signal: with e- pulse

Baseline: no e- pulse

Average all y-pixels at a particular x for each stripe.

```
Final signal: f(x) =
-log(Signal<sub>sample</sub>/Signal<sub>ref</sub>) +
log(Base<sub>sample</sub>/Base<sub>ref</sub>)
```

Absorption of IR125 dye with optical pump

- Rise time of signal ~6-7ps is limited by sample thickness of 2 mm along probe direction.
- Getting ~1-2 mOD noise.
 "normal PP data" noise level is 0.5-1mOD past T=0, 0.2-0.3mOD before.
- Similar pulse-probe data would require 10⁴+ shots, and take > 1 hour to collect!

Absorption of e⁻ in water in *1* e⁻ shot!

- 1 e- shot replaces many thousands
- Good S/N: no laser and e- pulse shot-shot noise; inherent signal averaging
- Limitations:
 - Temporal dynamic range
 - Time resolution
- Bottom line: UFSS viable

Echelon UFSS for sub-ps time resolution

- "Stair-Step" optical delays
- Step $\Delta = 10 + \text{ fs}$
- Use 2 crossed echelons
- Time windows < 20 ps

- Technique demonstrated in other labs
 Wakeham, G. P.; Nelson, K. A. Opt. Lett. 2000, 25, 505.
- With PPP experiment: 100 fs time resolution, mg samples

Acknowledgments

Richard Holroyd Sergei Lymar John Miller James Wishart

Alison Funston Steve Howell Yan Jiang Pavel Poliakov Jack Preses Tomasz Szreder Norihiko Takeda

U. S. Department of Energy, Division of Chemical Sciences, Office of Basic Energy Sciences