Performance and application of ultrafast pulse radiolysis system using laser photocathode rf-gun combined with fs laser

> Jul. 26th, 2004 Brookhaven National Laboratory, USA

Yusa Muroya, <u>Mingzhang Lin</u>, Hokuto Iijima, Toru Ueda, Mitsuru Uesaka, Yosuke Katsumura

> Nuclear Engineering Research Laboratory University of Tokyo, JAPAN

Measurement System

- Optical delay system
- Reference light for normalization of laser's fluctuation
- Elimination of noise by 2 shutters (beam on/off, laser on/off)

Measurement System

Beam-Material Interactions www.utnl.jp/~beam

Sample

Data Acquisition System

Beam-Material Interactions

www.utnl.jp/~beam

Measurement scheme

(1)linac/laser	On/On	Off/On	On/Off	Off/O	ff		
(2)oscill.&com	. Meas.1	I <mark>—</mark> Mea	s.2 <mark>—</mark> Mea	as.3 — N	Meas.4	O.D.calc.	
(3)delay system	n					Delay	

Preliminary Pulse Radiolysis

Beam-Material Interactions

www.utnl.jp/~beam

Condition

	H₂O&1M H⁺	H ₂ O
/ / mm	20 mm	5 mm
Charge	0.8-1.0nC	0.8-1.0nC
Beam size	4mm	4mm
Pulse width	7ps	3ps
Wavelength	795nm (Fur	ndamental)
Average	64	16
Time resol.	30ps	9ps

<u>Results</u>

- O.D. still low

Improvement : dose increase & λ extend

OK

Time resolution vs. dose

- (1) 2~3ps
- (2) 100fs
- : pulse width (laser)
- (3) <1ps
- : synch.
- (4) 5ps /5mm : Δt passing through H_2O

: pulse width (EB)

 \rightarrow Thinner cell & focused EB

Note: $O.D. = \varepsilon C l$ $l\downarrow$ for better time resolution, but O.D. \downarrow then, C^{\uparrow} for O.D. \rightarrow

Introduction of white light continuum

- 795nm \rightarrow white
- Worse stability of intensity
- S/N \downarrow then average \uparrow

	Previous	Current
Wavelength	795nm	400-1100nm
Average	16	64
Noise	~0.005 OD	~0.015 OD

Improvement

	Previous	Current
Charge	0.8-1.0nC	1.7-2.0nC
Beam size	4mm	3mm
Dose	13-15Gy	>40Gy/pulse
Pulse width	3ps	2ps

Radiolysis of water measured at 700nm

0.35

0.30

Beam-Material Interactions www.utnl.jp/~beam

Man mark

Time behaviors of e_{ad} at 700nm

Results

G-value of the solvated electron

Beam-Material Interactions www.utnl.jp/~beam

<u>G [molecules/100eV]</u>

nH₂O
$$\longrightarrow$$
 e_{aq}^{-} , H₃O⁺, H, OH, H₂, H₂O₂ ~100ns
H₂O⁺ + e⁻
H₂O⁺ + e⁻
H₂O⁺ + H₂O⁺ + e⁻ \longrightarrow $e_{pre}^{-} \rightarrow e_{aq}^{-}$ < 1ps

<u>Reported G(e_{aq}-)</u>

		SPR	KPR	Dose	Scav.	Sim.	G(time)		
1970	Tront							Kinetics only	
1973	Tront						4.0(30ps)		
							4.0(30ps)		
1973	ANL						4.1(200ps)	Sub-ns KPR	
1975	Tront								
							4.6(dry)	Dry electron	
1976	ANL			\bullet			4.6(100ps)	Reconcilation	
				(1973)			4.1(1ns)	1973	
1985	Hokkaido						4.8(30ps)		
1985									
-									
1996									
1996	NDRL						4.8(100ps)	Reconciliation	L
	& ANL							1976	
1999	ANL						4.0	Fs laser	
							(time zero)	Reconciliation	
2000	Tokyo								

- Initial G : 4.0~4.8 - Primary G: 2.7

Which G is reliable ?

Application of RF-Gun Pulse Radiolysis =

• G(e_{ag}-) measured at 795 & 633nm

- Ps by SPR (795nm)
- Ns by KPR(He-Ne laser) (633nm)

Condition

Sample	H ₂ O
Gas	Ar
//mm	18 mm
Charge	0.8-1.0nC
Beam size	4mm
Pulse width	3ps
Average	64

Beam-Material Interactions www.utnl.jp/~beam

Note1 : O.D. already normalized by charge Note2 : O.D. at 633nm normalized by ϵ ϵ : 15500(633nm), 16800 (795nm) G(20ps)=4.17±0.22

[1] Y. Muroya, J.-P. Jay-Gerin, Y. Katsumura et al, *Can. J. Chem.*, **80** (2002) 1367

G of solvated electron in alcohols

Beam-Material Interactions

www.utnl.jp/~beam

	G	ε / M -1 cm -1	τ _s	Ref.	D	η/cP	ρ/10 ²¹ cm ⁻³ [1]
Methanol	2.5 1.6 3.4 3.1,3.0 1.1	15500(575nm) 10200(630nm) 17000(?) 10400(630nm)[7]	11 10.7[6]	[1] [3] [4] [2] [5]	32.6[2]	0.55[7]	14.8
Ethanol	2.7 1.6 3.4 2.8 1.0	12000(575nm) 9300(700nm) 15000(?) 9900(690nm)[7]	18 23[6]	[1] [3] [4] [2] [5]	24.3[2]	1.07[7]	10.2
1-propanol	1.8 2.0 2.9,2.3 1.0	8400(575nm) 12800(700nm) 13000(?) 11000(640nm)[7]	24[1] 34[6]	[3] [4] [2] [5]	20.1[2]	1.92[7]	8
2-propanol	2.3 1.5 2.8,1.8 1.0	8400(575nm) 14000(?) 13000(820nm)[7]	25	[1] [3] [2] [5]	18.3[2]	2.04[7]	6.5
1-butanol	1.9 2.3	12000(635nm)[7]	30 39[6]	[1] [2]	17.1[2]	2.56[7]	3.8
1-octanol	1.4		45	[1]	10.3[2]	8.95[1] 7.36[7]	3.1
1-decanol	2.0	14000(650nm)[7]	51	[1]	7.8[2]	14.1[1] 11[7]	21.5

G of solvated electron in alcohols

Beam-Material Interactions

www.utnl.jp/~beam

	G	ε /M ⁻¹ cm ⁻¹	τ_{s}	Ref.	D	η/cP	ρ/10 ²¹ cm ⁻³ [1]
Ethylene Glycol	2.3 1.2	14000(580nm) 14000(?)	<5[1] 26	[4] [5]	37.7	19.9[1]	
Propylene Glycol (1.04)(1,2-PrD)		7500(570nm)[7]					
1,3-Propanediol (1.05)		6000(575nm)[7]					
Glycerol (1.26)(1,2,3-PrTri)		9700(530nm)[7]					

[1]G.A.Kenny-Wallace, C.D.Jonah, J.Phys.Chem., 86 (1982) 2572
[2]R.R.Hentz, G.A.Kenny-Wallace, J.Phys.Chem., 78 (1974) 514
[3]W.K.Wolff, J.W.Hunt, J.Phys.Chem., 77 (1973) 1350
[4]T.Sumiyoshi, M.Katayama, Bull.Chem.Soc.Jpn., 58 (1985) 3073

[5]M.J.Bronskill, J.W.Hunt, J.Chem.Phys., 53 (1970) 4201
[6]W.J.Chase, J.W.Hunt, J.Phys.Chem., 79 (1975) 2835
[7]C.Ferrandini, J.-P.Jay-Gerin, CRC press, (1991) 259

G of solvated electron in alcohols

Beam-Material Interactions www.utnl.jp/~beam

Condition

Sample	Methanol	Ethanol	
Wavelength	600nm	700nm	
	1100nm	1100nm	
//mm	10 mm		
Average	64		

Procedure of G-value determination

- (1) H_2O measurement at 700nm
- (2) Dose calculation
- (3) Alcohols measurement at λ_{max}

Results and discussion

Beam-Material Interactions

www.utnl.jp/~beam

Shorter τ Larger dielectric constant→ large G

Solvent (ρ /cm ³)	ε / Μ⁻¹cm⁻ ¹	Initial G	Initial G _E
H ₂ O (1.00)	18300 (700nm)	4.2	76800
Methanol (0.79)	10000 (600nm)	4.1	41000
Ethanol (0.79)	9900 (700nm)	3.6	35640
1-propanol (0.80)	12700 (700nm)	2.7	34300
2-propanol (0.79)	12000 (700nm)	2.3	27600
1-butanol (0.81)	11500 (700nm)	2.5	29000
1-decanol (0.84)	13500 (600nm)	2.5	33750
EG (1.1)	14000 (600nm)	2.8	39200
Propylene Glycol (1.04)(1,2-PrD)	7500 (570nm)	4.4	33000
1,3-Propanediol (1.05)	6000 (600nm)	6.1	36600
Glycerol (1.26)(1,2,3-PrTri)	8250 (600nm)	4.0	33000

Results and discussion

Beam-Material Interactions

www.utnl.jp/~beam

		MeOH	EtOH	PrOH	BuOH	DeOH
This work	τ (ps)@ 700nm or 600nm	9	11	9	10	15
This work	τ (ps)@1100nm	13	28	50	77	180
Depart	τ _s (ps)	10	18	24	30	51
Report	τ (ps)@1300nm	10	22	32		

- Formation time is faster than previous reports
- Decay appreciates with previous reports

Radiolysis of water : spectrum

Increase of G

• $G(e_{aq})$ measured from VIS to IR

Condition

	H ₂ O & 5M NaOH
//mm	10 mm
Wavelength	400 – 1100 nm
Average	64

<700nm : O.D.(alkali) > O.D.(neat) >700nm : O.D.(alkali) < O.D.(neat)

20% absorption increase7% density increase

 Development of new pulse radiolysis system combined with laser photocathode rf-gun and fs white light continuum has been almost completed.

Summar

- <4ps time resolution was achieved.
- It has been started application of the system to clarify radiation-induced fast processes, i.e., G-value of e_{aq}⁻, e_{sol}⁻ from several kinds of alcohol.