*ELYSE FACILITY Cs*₂*Te photoinjector*

H. Monard, Laboratoire de Chimie-Physique ELYSE, Orsay, France

Ultrafast Pusle Radiolysis – 2004 june 26-27

R.F. Gun + *Booster*

CERN/CTF cavities design

Accelerator layout

Accelerator room

Accelerator history

March 2001 Ti:Saphire laser installation April 2001 accelerator installation bat, 349 January 2002 cathode preparation chamber first beam – 9 MeV (Cu cathode - 5 Hz) April 2002 June 2002 RF commissionning 25 et 50 Hz leak CPC, baking C+S, bat. 349 chiller problem... 1st cathode Cs₂Te : 5 nC ! April 2003 1st bunch length of 5 ps - 1,5 nC - 9 MeVMay 2003 9 MeV and 5 MeV accelerator tunning October 2003 1st experiments with local users April 2004 solvated e- absorption signals

Photocathode choice of ELYSE

Cs₂Te

- Good quantum efficiency ≥ 1%
- Iess laser energy (~ 20 µJ/pulse)

Long life time (months)

dedicated UHV preparation chamber

- Transfert under vacuum to RF gun
- Work with UV laser 266 nm

Photocathode QE

G. Suberlucq, CTF (CERN), FEL96

Photocathode life time

G. Suberlucq, CTF (CERN), FEL96

QE ~10% just after the preparation and falls to 1%

Photocathode $Cs_2Te - QE = 1\% - \Phi = 20 \text{ mm}$

Photocathode preparation

Good vacuum < 1x 10^{-9} mbar (avoid O_2 , CO_2) Photocathode at 120°C during evaporation Set evaporation rate before metal deposition Measure thickness with quartz micro-balance

Cathode manipulation

Cathode Preparation Chamber

Vacuum ~ 4 x 10^{-8} mbar : leak porosity of feedthrough

Cathode Preparation Chamber

Te and Cs crucible

cathode

heating Quartz micro-balance

Photo-emitted charge vs laser energy

Same cathode since march 2003

Photocathode aging

Photo-current / Dark current -EA1

Photo-current / Dark current-EA3

Beam spot size

Pluse length – cerenkov radiation

Beam caracteristics

ELYSE accelerator fully operating

Cs₂Te cathode : high charge (5 nC) and long life (>1 year)

- 5 ps bunch length (1,5 nC)
- First experimental results