June 26, 2004 International Symposium on Ultrafast Accelerators for Pulse Radiolysis

## **Current status of photocathodes in Japan**

M. Uesaka, H. Iijima, Y. Muroya, T. Ueda, A. Sakumi, Nuclear Engineering Research Laboratory, University of Tokyo H. Tomizawa, N. Kumagai SPring-8, Japan Synchrotron Radiation Institute

### **Network and Collaboration**

under National Project on Advanced Compact Accelerator for Medical Use

hosted by National Institute for Radiological Science

- Mg (QE~10<sup>-3</sup>) photoinjector : U.Tokyo/SPring8
- 2. Cs<sub>2</sub>Te(QE~10<sup>-2</sup>) load-lock-type photoinjector : KEK/Nagoya Univ..
- 3. Cs2Te/Diamond (QE~10<sup>-1</sup>) cartridge-type photoinjector :

SPring8/U.Tokyo/Hamamatsu Photonics

# Cathode Surface

CCD Image of the cathode surface



Craters due to the RF discharge on the cathode surface

#### Mg cathode (High QE, ~10<sup>-3</sup>)

*Our cathode...*  $QE = 1.3 \times 10^{-4}$  (at present)



# Emittance Data

| Horizontal       | Vertical                                                                                                                           |                                                                                                                                                                                                                                |
|------------------|------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 26 $\pi$ mm.mrad | 24 $\pi$ mm.mrad                                                                                                                   | (Q3,4)                                                                                                                                                                                                                         |
| 21 $\pi$ mm.mrad | 29 $\pi$ mm.mrad                                                                                                                   | (Q1,2 Velocity Bunching, E=10MeV)                                                                                                                                                                                              |
| 22 $\pi$ mm.mrad | 11 $\pi$ mm.mrad                                                                                                                   | (Q1,2 Solenoid)                                                                                                                                                                                                                |
| 29 $\pi$ mm.mrad | 34 $\pi$ mm.mrad                                                                                                                   | (Q1,2)                                                                                                                                                                                                                         |
| 35 $\pi$ mm.mrad | 29 $\pi$ mm.mrad                                                                                                                   | (Q5,6 OTR method)                                                                                                                                                                                                              |
| 34 $\pi$ mm.mrad | 27 $\pi$ mm.mrad                                                                                                                   | (Q5,6)                                                                                                                                                                                                                         |
|                  | Horizontal<br>26 $\pi$ mm.mrad<br>21 $\pi$ mm.mrad<br>22 $\pi$ mm.mrad<br>29 $\pi$ mm.mrad<br>35 $\pi$ mm.mrad<br>34 $\pi$ mm.mrad | HorizontalVertical $26 \pi$ mm.mrad $24 \pi$ mm.mrad $21 \pi$ mm.mrad $29 \pi$ mm.mrad $22 \pi$ mm.mrad $11 \pi$ mm.mrad $29 \pi$ mm.mrad $34 \pi$ mm.mrad $35 \pi$ mm.mrad $29 \pi$ mm.mrad $34 \pi$ mm.mrad $27 \pi$ mm.mrad |

- Normalized, rms
- Energy 22MeV, Charge ∽1nC



## **Cs<sub>2</sub>Te cathode at KEK-ATF**

Kuriki M. and Terunuma N. for ATF collaboration

- CsTe cathode is formed by evaporation on Mo plug.
- CR Was measured by illuminating UV light from Xe lump.
- The cathode is transported to the gun cavity in the load-lock chamber.



## **Performance**

QE that was initially more than 10% was decreased rapidly down to around 1%.Even though, QE was kept around 1%.

The operation did not affect the cathode performance. The life time might be forever (at least more than two months).







#### Electron Gun including cartridge-type photocathode tubes



Transparent-type  $Cs_2Te$  and NEA Diamond tubes with high quantum efficiency are now under developing. Influence of <u>spatial</u> and temporal profiles of UV-laser light source for photo-cathode RF-GUN on electron-beam emittance

Hiromitsu Tomizawa : SPring-8/JASRI

- 1. Guiding principle for production of low-emittance electron beam
- 2. Experimental Setup
- **3.** Improvement of <u>spatial</u> laser profile
- 4. Experimental Results of Emittance
- 5. Summary & Discussion

## **3-2.** Spatial profile shaping with Microlens array

- Transmission: ~ 80%
- It is possible to shape laser profile as Silk-hat, using with a convex lens





Homogenizing

### **3-2-1.** Picture of Microlens array as Homogenizer

Homogenizser

Single (pitch:250µm) Intensity Uniformity =10~15%

0 0

Double (pitch:500µm) Intensity Uniformity < 5%

50

## **3-2-2.** Installation of Homogenizer in the Transport optical systems



## **3-3.** Result of spatial laser profile shaping



## **3-3-1.** Laser spot image on the cathode



## 5-2. Planned Diagnostics & Improvement

- Long-time Stability of Oscillator (>1 week)
- Installing Pulse-Shaping optics (SLM + Stretcher)
- **Regen** System for **UV**-Laser (Ce<sup>3+</sup>:LiCaAlF<sub>6</sub>??)
- Surface physics of Cathode

