Design and construction of ultrafast pulse radiolysis system using laser photocathode rf-gun combined with fs laser

> Jun. 26th, 2004 Brookhaven National Laboratory, USA

<u>Yusa Muroya</u>, Mingzhang Lin, Hokuto Iijima, Toru Ueda, Mitsuru Uesaka, Yosuke Katsumura

> Nuclear Engineering Research Laboratory University of Tokyo, JAPAN

Introduction

Development of new pulse radiolysis system

- Time resolution : ~50ps \rightarrow \leq 10ps
- Stroboscopic method (pump-and-probe)
 - Laser photocathode rf-gun and/or fs laser
 - Projects in progress in the world

BNL, Pari-sud, Waseda Univ., Sumitomo Heavy Industries,

Osaka Univ., ANL etc.

Precise Synchronization System at NERL

Synchronization System at NERL

Photocathode RF-Gun

Half cell

Cathode (Mg)

Full cell

Acceleration up to 4MeV by gradient of 100MV/m

(7.5MW, 10Hz S-band RF

Beam

(4-5MeV, 3nC, ~20πmmrad

dark current : ~8nA)

Laser

(265nm, ~100µJ, 4-6ps, D=3mm at cathode, 10Hz)

3ω

2 getter, 2 ion pumps (140dm³): <10⁻¹⁰Torr

Generation of ultra-short electron beam

Beam-Material Interactions www.utnl.jp/~beam

RF-gun study

- QE: ~1.2x10⁻⁴
- Emittance: 20π (hor.) and 20π (vert.) mmmrad
- >3nC/pulse@90deg

Generation of ultra-short electron beam

Beam-Material Interactions www.utnl.jp/~beam

Charge transportation

- Laser(265nm) : ~100µJ
- Gun phase : ~120deg
- ACC phase : ~80deg
- 80~90% transmission (Oct. 2003)

Optimized electron beam

Sections in linac	Photo- cathode	ACC		Chicane		Linac end (no slit)	Linac end (3mm slit)
Charge /nC	2.5	2.5		2.4		2.3	1.7-2.0 nC
Dark current /nC	~0.8	~0.2		~0	.05	~0.05	~0.05nC
Pulse width /ps	7				<1		2ps(FWHM)
Energy /MeV	4-5			22±0.1MeV			

Synchronization System

2 factors affecting timing jitter

σ_1 : Timing stabilization in laser oscillator - 100fs by passive mode-lock

σ_2 : Fluctuation of RF power & phase

Stable acceleration(2) : mutual jitter

Progress of synchronization system

Beam-Material Interactions www.utnl.jp/~beam

<u>Synchronization of electron beam</u> and laser by FESCA

Intensity [a.u.]

Progress of synchronization system

The laser transport line is 50 m long, and 14 bellows are used.

(iii) The mirror chamber with flexibility due to the bellows is moved by the pressure.

(ii) The pressure differencebetween inside and outside ofthe transport line chamberapplies the force to the mirrorchamber.

Transport line chamber Bellows Mirror Vacuum Air (i) The chamber of transport line is expanded and contracted by a change of temperature.

• In the chembers... Vacuum

Atmospheric pressure N₂ gas. To suppress the pressure effect! **Improvement : problems solved**

OK

Time resolution vs. dose

- (1) 2~3ps : pulse width (EB)
- (2) 100fs
- : pulse width (laser)
- (3) <1ps
- : synch.
- (4) 5ps /5mm : Δt passing through H_2O
- \rightarrow Thinner cell & focused EB

Note: $O.D. = \varepsilon C l$ $l\downarrow$ for better time resolution, but O.D. \downarrow then, C^{\uparrow} for O.D. \rightarrow

Introduction of white light continuum

- 795nm \rightarrow white
- Worse stability of intensity
- S/N \downarrow then average \uparrow

	Previous	Current	
Wavele	Fundamental	White	
ngth	795nm	400-1100nm	
Average	16	64	
Noise	~0.005 OD	~0.015 OD	

Improvement

	Previous	Current
Charge	0.8-1.0nC	1.7-2.0nC
Beam size	4mm	3mm
Dose	13-15Gy	>40Gy/pulse
Pulse width	3ps	2ps

Radiolysis of water measured at 700nm

0.35

0.30

Beam-Material Interactions www.utnl.jp/~beam

Man mark

Time behaviors of e_{ad} at 700nm

Results

Summarv

- Some problems have been pointed out. Consequently, most of those were improved.
- <4ps time resolution has been attained.
- Future works

Introduction of OPA for extending measurement wavelength