Raliation Chemisisty Resemcha flune Liversity

K. K. Sharma

National Center for Free Radical Research Department of Chemistry
University of Pune, Pune 411007
INDIA

Chemistry Department, University of Pune 55 years old

Human Resources	Academic Details	Branches
Teaching Staff 32 Non-teaching Staff 43 Research Students 60 M.Sc. Students 170 Ph. D. Studnets 50	M.Sc. *Under Academic Flexibility *Admission through Entrance Examination \{DoC - NCL $\}$ * Credit System	- Analytical -Biochemistry -Inorganic - Organic -Physical

Areas of Research

Structure - Reactivity Studies of Substituted Benzenes

Free Radical Chemistry of Metal Complexes

Redox Chemistry of Azo Dyes.

Radiation Chemical Studies of Organic Sulphur Compounds

Specifications of the LINAC

Parameter

Electron beam energy
Peak beam current @ 10 ns
Peak beam current @ $3 \mu \mathrm{~s}$
Beam diameter at exit
window
Jitter in pulse
Pulse rate (Mains locked
option) 0.1 to 100 krad / pulse
Radiation dose
Dose due to dark current
Pulse to pulse reproducibility
Energy spread
Exit window material
Single shot and multiple shots
Preset beam pulses
Pulse width - 10ns to $3 \mu \mathrm{~s}$

Specification

7 MeV

1 A
0.115 A

2 mm
$\pm 200 \mathrm{ps}$
50 to 200 pps in 12.5 pps steps
$<1 \%$ of Beam current
$\pm 1 \%$
$\pm 0.5 \mathrm{MeV}$
Titanium
50 to 200 pps
10 to 250 pulses in steps of 10 pulses
$10,20,50,100,200,400 \mathrm{~ns} \& 3 \mu \mathrm{~s}$

NCFRR: construction of the building completed in November 2003

LINAC

Experimental Methodology

$$
\begin{array}{ll}
\quad \text { Pulse Radiolysis } & \\
\text { LINAC at BARC } & \text { Steady State Radiolysis } \\
\text { Energy }=7 \mathrm{MeV} & { }^{60} \mathrm{Co} \gamma \text { source } \\
\text { Pulse width }=50 \mathrm{~ns} & \text { HPLC } \\
\text { Dose } / \text { Pulse }=14 \text { Gy } & \text { HPIC } \\
\text { Conc. }=0.2-1 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3} & \text { UV - VIS. }
\end{array}
$$

Quantum Chemical Calculations

Ab initio molecular orbital and hybrid density functional theory B3LYP method with 6-31 G (d,p) basis set were used.
Mullikien charge population on substituted and unsubstituted cinnamic acid was calculated.

Redox Reactions of Cinnamic acid and its Derivatives

Hydroxycinnamic acids - widely distributed phenolic acids in plant tissue

Cinnamic acid derivatives have been shown to be able to scavenge superoxide, peroxyl and hydroxyl radical.

The reaction of the ${ }^{\circ} \mathrm{OH}$ radical with cinnamic acid in aqueous solution proceeds via addition to both the ring and the olefinic group, the relative extent being 3:7 respectively (Bobrowski et al).

Transient absorption spectra obtained in the reaction of ${ }^{\circ} \mathrm{OH}$ and ${ }^{\bullet} \mathrm{N}_{3}$ with hydroxycinnamic acids at pH 7

m-hydroxycinnamic acid
p-hydroxycinnamic acid

Table 1: Second order rate constant $\left(\mathrm{k} / 10^{9} \mathrm{M}^{-1} \mathrm{~s}^{-1}\right)$ and absorption maxima ($\lambda_{\max } / \mathrm{nm}$) measured in the reaction of ${ }^{\bullet} \mathbf{O H},{ }^{\circ} \mathbf{N}_{\mathbf{3}}$ and $\mathbf{e}_{\mathbf{a q}}{ }^{-1}$ with derivatives of cinnamic acid

Compounds	${ }^{\circ} \mathrm{OH}$				$\frac{{ }^{\circ} \mathbf{N}_{3}}{\mathrm{pH} 7}$		$\mathrm{c}_{\text {aq }}{ }^{-}$	
	pH 3		pH 7				pH 7	
	k	$\lambda_{\text {max }}$						
Cinnamic acid (CA)			8.1	310, 365		$375 \rightarrow 320$	10.0	370
0- OH	1.6	360, 400	3.9	360	0.49	360	7.2	370
m-OH	4.2	330, 430	4.4	330, 390	(4.2)	$370 \rightarrow 340,400$	8.9	380
p-OH	3.4	350, 430	6.5	340	1.1	340	8.7	360
0 - OCH_{3}	5.7	390, 450	1.6	410	0.06	320	8.8	370
$\mathrm{m}-\mathrm{OCH}_{3}$	5.7	350,430	4.5	330, 380	(4.7)	380	7.9	380
$\mathrm{p}-\mathrm{OCH}_{3}$	1.5	370, 415	3.2	350, 410	0.43	330	7.6	360
0-Cl	-	-	4.4	320	(4.7)	$380 \rightarrow 330$	10	380
m-Cl	-	-	5.9	310, 370	(4.4)	$380 \rightarrow 330$	11	380
p-Cl	-	-	3.4	360	(5.1)	$380 \rightarrow 320$	11	380
$0-\mathrm{NO}_{2}$	-	-	3.2	400	<0.001	-	15.4	370
$\mathrm{m}-\mathrm{NO}_{2}$	-	-	3.0	310, 410	<0.001	-	16.6	360
$\mathrm{p}-\mathrm{NO}_{2}$	-	-	2.8	370	3.7	$365 \rightarrow<340$	15.6	370

Table 2: The $\lambda_{\text {max }}$ of the radical cation as predicted by the single electron excitation (CIS) calculations.

Compounds	Theoretical $\lambda_{\max } / n m$	Experimental $\lambda_{\max } / n m$
o-Hydroxycinnamic acid m-Hydroxycinnamic acid p-Hydroxycinnamic acid	$\begin{aligned} & 222,235,241 \\ & 308,328 \\ & 290,319 \end{aligned}$	370
o-Methoxycinnamic acid m-Methoxycinnamic acid p-Methoxycinnamic acid	$\begin{aligned} & 298,321 \\ & 310,332 \\ & 291,318 \end{aligned}$	$\begin{aligned} & 320 \\ & 380 \\ & 330 \end{aligned}$
o-Chlorocinnamic acid m-Chlorocinnamic acid p-Chlorocinnamic acid	$\begin{aligned} & 263,324 \\ & 265,324 \\ & 300,339 \end{aligned}$	$\begin{aligned} & 320,380 \\ & 320,380 \\ & 320,380 \end{aligned}$
o-Nitrocinnamic acid m-Nitrocinnamic acid p-Nitrocinnamic acid	$\begin{aligned} & 333,355,361 \\ & 339,462 \end{aligned}$	<340

Conclusions :

Cinnamic acid is ortho and para directing despite carboxylate group being an electron withdrawing.

The reaction of the ${ }^{\circ} \mathrm{OH}$ radical with cinnamic acid at pH 7 can proceeds via three ways i.e addition to the aromatic ring, addition to the aliphatic double bond and by electron transfer.

At acidic pH the reaction proceeds by two ways i.e addition to ring and addition to double bond.

Redox Chemistry of Ru(II) Complexes

\% Ru(II) complexes have good charge transfer property.
F Pyridine based ligands form highly stable complexes and one electron oxidation and/or reduction does not cause considerable change in their geometry.

F Pulse Radiolysis + Chemical methods : effective technique in order to understand the redox chemistry of these complexes.

RUTHENIUM SYSTEM

Absorption spectra of
1: $\left[\mathrm{Ru}(\text { phen })_{3}\right]^{2+} \quad$ 2: $\left[\mathrm{Ru}(\text { phen })_{2}(\text { dicnq })\right]^{2+}$
3: $\left[\operatorname{Ru}(\text { phen })(\text { dicnq })_{2}\right]^{2+}$ 4: $\left[\operatorname{Ru}(\text { dicnq })_{3}\right]^{2+}$ Inset : a : phen b:dicnq

Time resolved absorption spectra of the ligands

[phen] $=1 \times 10^{-3} \mathrm{M},\left[\right.$ dicnq] $=1 \times 10^{-4} \mathrm{M}$ dose/pulse $\sim 7 \mathrm{~Gy}$. at pH 7.$$

Reactions of $\left[\mathrm{Ru}(\text { phen })_{2}(\text { dienq })\right]^{2+}$

Reactions of hydrated electron with Ru(II) complexes

$\lambda_{\max }$ in $\mathrm{nm} \quad k$ in $10^{9} \mathrm{M}^{-1} \mathrm{~s}^{-1}$

Compound	$\cdot \mathrm{OH}$		O--		SO-	$\mathrm{e}^{-}{ }_{\text {aq }}$	
	$\lambda_{\text {max }}$	k	$\lambda_{\text {max }}$	k	$\lambda_{\text {max }}$	$\lambda_{\text {max }}$	k
phen	$\begin{aligned} & 350 \\ & 430 \end{aligned}$	5.0	$\begin{aligned} & 340 \\ & 440 \end{aligned}$	0.8	430	$\begin{aligned} & 325 \\ & 360 \\ & 490 \end{aligned}$	8.8
dicnq	380	(1.2)	$\begin{aligned} & 380 \\ & 450 \end{aligned}$	(1.5)	380	$\begin{aligned} & 310 \\ & 380 \end{aligned}$	(6.5)
$\left[\mathrm{Ru}(\mathrm{phen})_{3}\right]^{2+}$	$\begin{aligned} & \hline 435 \\ & 500 \end{aligned}$	7.5	420	2.4	430	$\begin{aligned} & 435 \\ & 500 \end{aligned}$	31.3
$\left[\mathrm{Ru}(\text { phen })_{2}(\text { dicnq) }]^{2+}\right.$	425	8.2	420	(3.7)	Nd	440	25.7
$\left[R u(p h e n)(\text { dicnq) })^{1}\right]^{2+}$	420	8.7	420	(2.4)	Nd	440	21.9
$\left[\mathrm{Ru}(\text { dicnq) })^{1}\right]^{2+}$	380	11.8	400	1.0	Nd	440	16.0

Ru(II) Complexes

$$
\begin{aligned}
& {\left[\mathrm{Ru}^{\mathrm{II}}(\text { phen })_{\mathrm{n}}(\text { dicnq })_{3-\mathrm{n}}\right]^{2+} \xrightarrow{\mathrm{OH}}\left[\mathrm{Ru}^{\mathrm{II}}(\text { phen })_{\mathrm{n}-1}(\text { phen-OH })(\text { dicnq })_{3-\mathrm{n}}\right]^{2+}} \\
& \mathrm{n}=0,1,2,3
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\mathrm{Ru}^{\mathrm{II}}(\text { phen })_{\mathrm{n}}(\text { dicnq })_{3-\mathrm{n}}\right]^{2+} \xrightarrow{\mathrm{Cl}_{2}^{-}}\left[\mathrm{Ru}^{\mathrm{III}}(\text { phen })_{\mathrm{n}}(\text { dicnq })_{3-\mathrm{n}}\right]^{3+}} \\
& \mathrm{n}=0,1,2,3 \\
& {\left[\mathrm{Ru}^{\mathrm{II}}(\text { phen })_{3}\right]^{2+} \xrightarrow{\mathrm{SO}_{4}^{-}}\left[\mathrm{Ru}^{\mathrm{II}}(\text { phen })_{3}\right]^{3+}+\mathrm{SO}_{4}^{2^{-}}} \\
& \left.\left[\mathrm{Ru}^{\mathrm{II}}(\text { phen })_{2}(\text { dicnq })\right]^{2+} \xrightarrow{\mathrm{N}_{3}^{*}}\left[\mathrm{Ru}^{\text {III }} \text { (phen) }\right)_{2}(\text { dicnq })\right]^{3+}+\mathrm{N}_{3}^{-} \\
& \text {J. Photochem. Photobiol. A., Chem (in press). } \\
& \text { Research on Chemical Intermediates (In press) }
\end{aligned}
$$

Reactions with hydrated electron

Why Azo dyes?

High stability towards light, aerobic biodegradation and common oxidant

Environmental concerns-extremely difficult to remove.

Reduction may lead to degraded products (aromatic amines), potential health hazard
~ 1 million tonnes of dye stuffs based on $>10,000$ different structures

Oxidation of 1-arylazo-2-naphthol dyes by ${ }^{\circ} \mathrm{OH} \& \mathrm{~N}_{3}{ }^{\circ}$

Second-order rate constants $\left(k / 10^{10} \mathrm{M}^{-1} \mathrm{~s}^{-1}\right)$ for the reaction of ${ }^{\bullet} \mathrm{OH}$ and $\mathrm{N}_{3}{ }^{\bullet}$

| Dyes | pK_{a} | pH | ${ }^{\bullet} \mathrm{OH}$ | $\mathrm{N}_{3}{ }^{2}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |

	Unsubstituted dye $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H}$	10.8	7.0	1.1	0.07
	$\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H}$		12.0		0.5
	o-methoxy dye $\mathrm{R}^{1}=\mathrm{H} ; \mathrm{R}^{2}=\mathrm{OCH}_{3}$	11.4	7.0	1.0	0.4
	p-methoxy dye $\mathrm{R}^{1}=\mathrm{OCH}_{3} ; \mathrm{R}^{2}=\mathrm{H}$	10.8	7.0	1.1	0.8
1-arylazo-2-naphthol	p-chloro dye				
	$\mathrm{R}^{1}=\mathrm{Cl} ; \mathrm{R}^{2}=\mathrm{H}$				
	p-methyl dye	10.5	7.0	1.0	0.05
	$\mathrm{R}^{1}=\mathrm{CH}_{3} ; \mathrm{R}^{2}=\mathrm{H}$				
		10.9	7.0	1.2	0.2

Mechanism for the oxidation of 1-arylazo-2-naphthol by ${ }^{\circ} \mathrm{OH}$ \& ${ }^{\circ} \mathrm{N}_{3}$

Electron Transfer
J. Physical Chem. A: 106, 2002, 2915

Mechanism for the oxidation of Orange I by ${ }^{\circ} \mathrm{OH} \& \mathrm{~N}_{3}{ }^{\circ}$

Table : Rate constants $\left(k / 10^{9} \mathrm{M}^{-1} \mathrm{~s}^{-1}\right)$ for the reaction of various radicals with Orange II at pH 7

Reacting Species	k
${ }^{\bullet} \mathrm{CH}_{2} \mathrm{OH}$	1.1
${ }^{\circ} \mathrm{CH}_{2} \mathrm{CH}_{3} \mathrm{OH}$	2.3
${ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{3}\right){ }_{2} \mathrm{OH}$	2.7
$\stackrel{+}{\mathrm{C}} \mathrm{H}_{2}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{OH}$	<0.01
$\mathrm{HOCH}-\mathrm{CH}_{2} \mathrm{OH}$	0.15
	0.62
	1.5

Reacting Species	k
	20xam
	2.0
	<0.01
	$\begin{aligned} & 0.9 \\ & <0.01 \end{aligned}$
CO_{2}^{-}	1.7
O_{2}°	<0.01
HO_{2}°	<0.01
N_{3}^{\bullet}	0.1

Conclusions

1. $\cdot \mathrm{OH}$ reaction - independent of substituents and dye forms.
2. ${ }^{\circ} \mathrm{OH}$ adducts (1-arylazo-2-naphthol and 2-arylazo 1-naphthol), decay bimolecularly by dimmerisation (Stoichiometry $=1 \cdot \mathrm{OH}: 1$ dye).
3. ${ }^{\bullet} \mathrm{OH}$ adducts (orange I and O-methylated orange I) undergoes $\mathrm{H}_{2} \mathrm{O}$ elimination (acid-base catalysed)to give one-electron oxidised radical.
4. $N_{3} \cdot$ reaction - dependent on substituents $\left(\rho^{+}=-2.0\right)$ and dye forms.
5. Electron transfer reaction - one-electron oxidised radical - decay bimolecularly by disproportionation. (Stoichiometry $=2 \mathrm{~N}_{3}{ }^{\bullet}$: 1 dye), highly reducing in nature
6. $\mathrm{e}_{\mathrm{aq}}{ }^{-}$and ${ }^{\bullet} \mathrm{COH}\left(\mathrm{CH}_{3}\right)_{2}$ - the electron adducts protonates to hydrazyl radical,
7. bimolecularly disproportionate (Stoichiometry $=2: 1$).

Acknowledgment

Dr. J. P. Mittal
Dr. Hari Mohan
Dr. D. K. Maity
Prof. C. von Sonntag
Prof. P. O'Neill
Prof. C. D. Jonah
Prof. J. Oakes
Dr. Stephen Batchelor
(BARC, INDIA)
(BARC, INDIA)
(BARC, INDIA)
(MPIS, GERMANY)
(MRC, UK)
(ANL, USA)
(Unilever Research, UK)
(Unilever Research, UK)

Financial Assistance
DAE - BRNS, DST, UGC

