Radiation Chemistry Research at Pune University

K. K. Sharma

National Center for Free Radical Research Department of Chemistry University of Pune, Pune 411007 INDIA

Chemistry Department, University of Pune 55 years old

Human Resources

Teaching Staff32Non-teaching Staff43Research Students60M.Sc. Students170Ph. D. Studnets50

Academic Details

<u>M.Sc.</u>

- *Under Academic
 - Flexibility
- *Admission through Entrance Examination {DoC - NCL}
- * Credit System

Branches

•Analytical

- Biochemistry
- •Inorganic
- •Organic
- Physical

Areas of Research

Structure - Reactivity Studies of Substituted Benzenes

Free Radical Chemistry of Metal Complexes

Redox Chemistry of Azo Dyes.

Radiation Chemical Studies of Organic Sulphur Compounds

Specifications of the LINAC

Parameter	Specification
Electron beam energy	7 MoV
Peak beam current @ 10 ns	
Peak beam current @ 3 us	
Beam diameter at exit	2 mm
window	+200 ns
Jitter in pulse	50 to 200 pps in 12.5 pps steps
Pulse rate (Mains locked	
option)	0.1 to 100 krad / pulse
Radiation dose	<1% of Beam current
Dose due to dark current	±1%
Pulse to pulse reproducibility	± 0.5 MeV
Energy spread	Titanium
Exit window material	50 to 200 pps
Single shot and multiple shots	10 to 250 pulses in steps of 10 pulses
Preset beam pulses	10, 20, 50, 100, 200, 400 ns & 3 μs
Pulse width - 10ns to 3us	

NCFRR: construction of the building completed in November 2003

LINAC

Experimental Methodology

Pulse Radiolysis

LINAC at BARC Energy = 7 MeV Pulse width = 50 ns Dose / Pulse = 14 Gy Conc. = $0.2 - 1 \ge 10^{-3} \mod 10^{-3}$ **Steady State Radiolysis**

 60 Co γ source HPLC HPIC UV – VIS.

Quantum Chemical Calculations

Ab initio molecular orbital and hybrid density functional theory **B3LYP** method with **6-31 G (d,p)** basis set were used. Mullikien charge population on substituted and unsubstituted cinnamic acid was calculated.

Redox Reactions of Cinnamic acid and its Derivatives

Hydroxycinnamic acids - widely distributed phenolic acids in plant tissue

Cinnamic acid derivatives have been shown to be able to scavenge superoxide, peroxyl and hydroxyl radical.

The reaction of the •OH radical with cinnamic acid in aqueous solution proceeds *via* addition to both the ring and the olefinic group, the relative extent being 3:7 respectively (**Bobrowski** *et al*).

Transient absorption spectra obtained in the reaction of ${}^{\bullet}OH$ and ${}^{\bullet}N_3$ with hydroxycinnamic acids at pH 7

m- hydroxycinnamic acid

p-hydroxycinnamic acid

Table 1: Second order rate constant (k/10⁹ M⁻¹ s⁻¹) and absorption maxima (λ_{max} /nm) measured in the reaction of **'OH**, **'N**₃ and **e**_{aq} ⁻ with derivatives of cinnamic acid

Compounds	•(Н		°N ₃		e _{aq} -	
	рН 3		pH 7		pH 7		pH 7	
	k λ_{max}		k	κ λ _{max}		k λ _{max}		λ_{max}
Cinnamic acid (CA)			8.1	310, 365		$375 \rightarrow 320$	10.0	370
0- OH	1.6	360, 400	3.9	360	0.49	360	7.2	370
m-OH	4.2	330, 430	4.4	330, 390	(4.2)	370→ 340, 400	8.9	380
р-ОН	3.4	350, 430	6.5	340	1.1	340	8.7	360
o-OCH ₃	5.7	390, 450	1.6	410	0.06	320	8.8	370
m-OCH ₃	5.7	350,430	4.5	330, 380	(4.7)	380	7.9	380
p-OCH ₃	1.5	370, 415	3.2	350, 410	0.43	330	7.6	360
o-Cl	-	-	4.4	320	(4.7)	380→ 330	10	380
m-Cl		-	5.9	310, 370	(4.4)	$380 \rightarrow 330$	11	380
p-Cl	-	-	3.4	360	(5.1)	$380 \rightarrow 320$	11	380
0-NO ₂	-		3.2	400	< 0.001	-	15.4	370
m-NO ₂	-		3.0	310, 410	< 0.001	-	16.6	360
p-NO ₂	-	-	2.8	370	3.7	$365 \rightarrow < 340$	15.6	370

Table 2: The λ_{max} of the radical cation as predicted by the single electron excitation (CIS) calculations.

Compounds	Theoretical	Experimental	
Compounds	λ_{\max} / nm	λ _{max} / nm	
<i>o</i> -Hydroxycinnamic acid <i>m</i> -Hydroxycinnamic acid <i>p</i> -Hydroxycinnamic acid	222, 235, 241 308, 328 290, 319	370	
<i>o</i> -Methoxycinnamic acid <i>m</i> -Methoxycinnamic acid <i>p</i> -Methoxycinnamic acid	298, 321 310, 332 291, 318	320 380 330	
<i>o</i> -Chlorocinnamic acid <i>m</i> -Chlorocinnamic acid <i>p</i> -Chlorocinnamic acid	263, 324 265, 324 300, 339	320, 380 320, 380 320, 380	
<i>o</i> -Nitrocinnamic acid <i>m</i> -Nitrocinnamic acid <i>p</i> -Nitrocinnamic acid	333, 355, 361 339, 462	< 340	

Conclusions :

Cinnamic acid is ortho and para directing despite carboxylate group being an electron withdrawing.

The reaction of the •OH radical with cinnamic acid at pH 7 can proceeds *via* three ways i.e addition to the aromatic ring, addition to the aliphatic double bond and by electron transfer.

At acidic pH the reaction proceeds by two ways i.e addition to ring and addition to double bond .

Proc. Ind. Acad. Sci., 114 (6) 721-730 (2002)

Redox Chemistry of Ru(II) Complexes

K Ru(II) complexes have good charge transfer property.

Pyridine based ligands form highly stable complexes and one electron oxidation and/or reduction does not cause considerable change in their geometry.

Pulse Radiolysis + Chemical methods : effective technique in order to understand the redox chemistry of these complexes.

RUTHENIUM SYSTEM

[Ru(phen)_n(dicnq)_{3-n}]²⁺, n = 0, 1, 2, 3

phen = 1, 10-Phenanthroline dincq = 6,7-Dicyanodipyrido[2,2-d:2',3'-f] quinoxaline

phen

dincq

Absorption spectra of

1: $[Ru(phen)_3]^{2+}$ 2: $[Ru(phen)_2(dicnq)]^{2+}$ 3: $[Ru(phen) (dicnq)_2]^{2+}$ 4: $[Ru (dicnq)_3]^{2+}$ Inset : **a** : phen **b** : dicnq

Time resolved absorption spectra of the ligands

 $[phen] = 1 \times 10^{-3} M$, $[dicnq] = 1 \times 10^{-4} M$ dose/pulse ~ 7 Gy. at pH 7.

Reactions of hydrated electron with Ru(II) complexes

 λ_{max} in nm k in 10⁹ M⁻¹ s⁻¹

Compound	•OH		0•-		SO•-	e- _{aq}	
Compound	λ_{max}	k	λ_{max}	k	λ_{max}	λ _{max}	k
phen	350		340			325	
	430	5.0	440	0.8	430	360	8.8
						490	
dicnq	380	(1.2)	380	(1.5)	380	310	
			450			380	(6.5)
[Ru(phen) ₃] ²⁺	435	7.5	420	2.4	430	435	31.3
	500					500	
[Ru(phen) ₂ (dicnq)] ²⁺	425	8.2	420	(3.7)	Nd	440	25.7
[Ru(phen) (dicnq) ₂] ²⁺	420	8.7	420	(2.4)	Nd	440	21.9
[Ru(dicnq) ₃] ²⁺	380	11.8	400	1.0	Nd	440	16.0

Ru(II) Complexes

 $[Ru^{II} (phen)_{n} (dicnq)_{3-n}]^{2+} \xrightarrow{OH} [Ru^{II} (phen)_{n-1} (phen-OH) (dicnq)_{3-n}]^{2+}$ n = 0, 1, 2, 3

$$[\operatorname{Ru}^{II}(\operatorname{phen})_{n}(\operatorname{dicnq})_{3-n}]^{2+} \xrightarrow{\operatorname{Cl}_{2}} [\operatorname{Ru}^{III}(\operatorname{phen})_{n}(\operatorname{dicnq})_{3-n}]^{3+}$$

n = 0, 1, 2, 3

$$[\operatorname{Ru}^{II}(\operatorname{phen})_{3}]^{2+} \xrightarrow{\operatorname{SO}_{4}^{-}} [\operatorname{Ru}^{III}(\operatorname{phen})_{3}]^{3+} + \operatorname{SO}_{4}^{2-}$$
$$[\operatorname{Ru}^{II}(\operatorname{phen})_{2}(\operatorname{dicnq})]^{2+} \xrightarrow{\operatorname{N}_{3}^{-}} [\operatorname{Ru}^{III}(\operatorname{phen})_{2}(\operatorname{dicnq})]^{3+} + \operatorname{N}_{3}^{-}$$

J. Photochem. Photobiol. A., Chem (in press). Research on Chemical Intermediates (In press)

Reactions with hydrated electron

Why Azo dyes?

High stability towards light, aerobic biodegradation and common oxidant

Environmental concerns-extremely difficult to remove.

Reduction may lead to degraded products (aromatic amines), potential health hazard

 \sim 1 million tonnes of dye stuffs based on >10, 000 different structures

Oxidation of 1-arylazo-2-naphthol dyes by •OH & N₃•

 R^{1}

 $R^1 =$

1-2

Second-order rate constants ($k/10^{10}$ M⁻¹s⁻¹) for the reaction of •OH and N₃•

	Dyes	pK _a	рН	•OH <i>k</i>	N ₃ • <i>k</i>
QH	Unsubstituted dye $R^1 = R^2 = H$	10.8	7.0 12.0	1.1	0.07 0.5
	o-methoxy dye $R^1 = H; R^2 = OCH_3$	11.4	7.0	1.0	0.4
$R^2 = -H, -OCH_3, -CH_3, -CI$ arylazo-2-naphthol	p-memoxy dye $R^1 = OCH_3; R^2 = H$ p-chloro dye	10.8	7.0	1.1	0.8
	$R^{1} = CI; R^{2} = H$ p-methyl dye $R^{1} = CH_{2}; R^{2} = H$	10.5	7.0	1.0	0.05
		10.9	7.0	1.2	0.2

Mechanism for the oxidation of 1-arylazo-2-naphthol by •OH & •N₃

Mechanism for the oxidation of Orange I by •OH & N₃•

Table : Rate constants $(k/10^9 \text{ M}^{-1} \text{s}^{-1})$ for the reaction of variousradicals with Orange II at pH 7

Reacting Species	k
•CH ₂ ОН	1.1
•CH ₂ CH ₃ OH	2.3
•C(CH ₃) ₂ OH	2.7
сн ₂ (сн ₃) ₂ он	<0.01
носн— сн ₂ он	0.15
$HC - CH_2 - CH_2$ HO OH	0.62
$H^{\circ}C - CH_{2} - CH_{2}$ OH OH	1.5

and the second state of the se

Reacting Species

k

and the second second

 CO_2^- 1.7

 O_2^- <0.01</td>

 HO_2^\bullet <0.01</td>

N₃[•] 0.1

where the second second second second second second second the

Conclusions

- 1. •OH reaction independent of substituents and dye forms.
- OH adducts (1-arylazo-2-naphthol and 2-arylazo 1-naphthol), decay bimolecularly by dimmerisation (Stoichiometry = 1•OH : 1 dye).
- OH adducts (orange I and O-methylated orange I) undergoes H₂O elimination (acid-base catalysed)to give one-electron oxidised radical.
- 4. N_3^{\bullet} reaction dependent on substituents (ρ^+ = -2.0) and dye forms.
- 5. Electron transfer reaction one-electron oxidised radical decay bimolecularly by disproportionation. (Stoichiometry = $2 N_3^{\bullet}$: 1 dye), highly reducing in nature
- 6. e_{aq}^{-} and $COH(CH_3)_2$ the electron adducts protonates to hydrazyl radical,
- 7. bimolecularly disproportionate (Stoichiometry = 2:1).

Acknowledgment

Dr. J. P. Mittal Dr. Hari Mohan Dr. D. K. Maity Prof. C. von Sonntag Prof. P. O'Neill Prof. C. D. Jonah Prof. J. Oakes Dr. Stephen Batchelor

Financial Assistance DAE - BRNS, DST, UGC (BARC, INDIA) (BARC, INDIA) (BARC, INDIA) (MPIS, GERMANY) (MRC, UK) (ANL, USA) (Unilever Research, UK) (Unilever Research, UK)