Ultrashort laser/electron pulse facility for the study of charge and exciton dynamics in functional materials

Laurens D.A. Siebbeles Delft University of Technology The Netherlands

July 8, 2004

1

Delft University of Technology

Capabilities of new fsec laser/electron accelerator system

3

July 8, 2004

4

July 8, 2004

Ultrafast laser/electron pulse facility in Delft, The Netherlands

Materials with (potential) opto-electronic applications

conducting polymers

discotic liquid crystals

inorganic nanoparticles, nanorods

supra-molecular assemblies

DNA

composite systems

Organic materials in opto-electronic devices

Light-emitting diode

Solar cell

July 8, 2004

Fundamental knowledge needed for improved device perfomance

- factors governing motion of charges and excitons
- efficiency of charge recombination
- decay channels of excitons: fluorescence, dissociation, annihilation
- quantum yield for photogeneration of charges

July 8, 2004

TUDelft

Electron versus laser pulses

Formation of charges

charges:

- concentration on psec timescale known
- *absolute values* of extinction coefficient and THz mobility
- decay mechanism and kinetics

excitons and charges

- quantum yield Φ
- exciton properties and dynamics

conjugated polymers

poly(thienylene vinylene) (PTV)

polyfluorene

ladder-type PPP

<u>Effects of:</u> backbone, substituents, defects, temperature, morphology (dilute solution, thin films, bulk) spin-coating, annealing....

Photogeneration efficiency of charges in MEH-PPV

Time resolved information

Frequency resolved information at 'short' times

lower limit to $\mu(30 \text{ GHz})=10^{-3} \text{ cm}^2\text{V}^{-1}\text{s}^{-1}$: Free charge generation < 1%

Hendry et al., Phys. Rev. Lett. 92, 196601, 1-4, (2004)

Mainly imaginary conductivity;

temporary displacement of bound charges: **Excitons**

Clausius-Mossoti $\sigma = -i \omega n \varepsilon_0 d$ escribes linear increase with frequency

discotic liquid crystalline materials

disorder along the columns

composite systems

- Laser system is expected to be operational early 2005
- Electron pulses available 2005/2006
- New facility will help to unravel the nature and dynamics of excitons and charge carriers in functional materials

DNA

How mobile are charges in DNA?

- oxidative damage to DNA (mutations)
- DNA as a molecular wire

G G G G	······ A A A A ······	G A G A
CCCC	T T T T	CTCT

Ionization (~ 6 eV needed) with high-energy electron pulse.

Monitoring of charges by optical absorption and THz conductivity.

Holy Grail

To make an important contribution to the upcoming era of molecular electronics.

To be able to predict the properties of charge carriers and excitons in (not yet existing) materials.

laser driven electron accelerator

July 8, 2004

řUDelft

Motivation

Towards novel electronics based on **organic molecular materials** (instead of e.g. Si) as active component in **opto-electronic devices**.

Advantages include:

- flexible
- easy to process
- tunable properties
- light weight
- cheap

Clausius-Mossoti $\sigma = -i \omega n \varepsilon_0 \varepsilon$

The product of the exciton density (*n*) and the polarizabiliy (α) determine the imaginary conductivity (σ).

Literature: $\alpha = 800-3000 \text{ Å}^3$ (Gelinck et al. Phys Rev B **62**, 1489 (2000))

This gives an exciton density corresponding to a photogeneration quantum yield between 0.3 and 1.

Since few charges are generated $\alpha \sim 800 \text{ Å}^3$

Theoretical support

- electronic structure calculations (HF, DFT etc.)
- quantum mechanical calcs. on charge and exciton motion
- Monte Carlo simulations of hopping transport

